Усилитель звука на TDA2030a
Приветствую, Самоделкины!
Автор YouTube канала «Radio-Lab» заказал вот такие наборы для сборки усилителей звука на базе микросхемы TDA2030a.
Микросхемы TDA2030a не дорогие и в свое время были очень популярными. Они обладают достойным звучанием и их часто можно встретить в заводских аудиокомплексах. Автор купил вот такие не дорогие наборы для сборки усилителя звука на ТDА2030а.
Достаем все, что было в пакете.
Как Вы можете видеть, деталей не много. Собирать будем один канал, а для стерео усилителя таких нужно будет два. Основой усилителя является многим известная 5-ти ногая микросхема TDA2030a, с выходной мощностью до 18Вт.
Печатая плата маленькая, выполнена качественно, все номиналы деталей указаны на плате.
Так же с набором была инструкция, где можно разглядеть характеристики усилителя, схему, перечень деталей и как выглядит уже собранный усилитель.
Запитать такой усилитель можно от однополярного источника питания или аккумулятора. Кстати схема немного отличается от схемы из даташита, в ней нет диодов, но все будет работать.
Давайте уже приступим к сборке. Что и куда паять есть на плате. Сначала будем устанавливать постоянные резисторы.
Чтобы узнать номинал и ничего не напутать, автор использует вот такой тестер радиодеталей.
Устанавливаем резистор, нажимаем на кнопку, и тестер показал номинал, в данном случае это 4,7кОм.
На плате место этого резистора вот здесь.
Примеряем, загибаем ножки, устанавливаем деталь, лишнее откусываем и паяем деталь. Резистор установлен на свое место и аналогично все остальные.
Неполярных конденсаторов два, они одинаковые по номиналу, просто ставим их на свои места.
Электролитические конденсаторы нужно устанавливать соблюдая полярность, более длиная ножка – это плюс, так же есть метка минуса на корпусе конденсатора и метка минуса есть на плате. Так же не стоит забывать смотреть на номинал.
Конденсатор установлен и аналогично все остальные, которые поменьше.
В наборе есть диод для защиты от переполюсовки по питанию. На корпусе диода есть метка и по такой же метке на плате устанавливаем диод.
Для подключения питания входа и выхода в наборе есть вот такие штыревые разъёмы с шагом 2,5 мм.
Разделяем их по 2 штырька и устанавливаем на плату.
И уже осталось аккуратно установить и запаять саму микросхему.
После всей работы получилась вот такая собранная плата усилителя звука на микросхеме TDA2030a.
Внешне все нормально, главное не спешить. Плату со стороны пайки автор отмыл от канифоли.
А теперь бы очень желательно проверить будет ли все это работать. Это усилитель класса АВ и в процессе работы микросхема нагревается. Для охлаждения микросхемы нужен небольшой радиатор.
Так же микросхему желательно изолировать от радиатора с помощью изолирующей прокладки и шайбы, которые были в комплекте.
Теперь все готово для подключения. Напряжение питания по инструкции от 9 до 24В, сопротивление акустики от 4 до 8Ом. Мощность указана до 14Вт на 4Ом-ную акустику, но по даташиту на микросхему TDA2030a при напряжении питания 24В можно получить не более 10В – и это больше похоже на правду, а если напряжение питания ниже, то и мощность тоже будет ниже.
Автор купил вот такие разъёмы для подключения усилителя с шагом 2,5мм, нужно отрезать нужное количество контактов.
Вот это провод для передачи звука от телефона на усилитель с разъёмом 3,5мм.
Сигнальный провод ближе к радиатору и рядом общий.
Усилитель моно и автор подключил только один канал. Для питания будем использовать блок питания от ноутбука на 19В и 4,5А.
Для подключения к усилителю автор спаял вот такой провод с разъёмом 5,5х2,5мм, красный это плюс, а синий – минус.
При подключении питания к усилителю очень желательно соблюдать полярность питания.
Вход и питание подключены, и еще нужно подключить акустику. Тестовая акустика вот такая колонка Радиотехника S30-b.
На провод колонки автор припаял разъём и соблюдая полярность подключил колонку к усилителю.
Все собрано и готово для включения. Пробуем подключить блок питания.
Усилитель работает и гудит, но это из-за того, что по входу усилителя ничего не подключено. После подключения телефона гудение пропало.
От аккумулятора 12В тоже все отлично работает, но мощность уже ниже.
Вот такой маленький усилитель получился.
Если все собрано правильно и подключено правильно, то все работает отлично, посторонних шумов нет. Можно сказать, что это один из лучших усилителей для начинающих радиолюбителей. Он не дорогой, его легко собрать и подключить, у него однополярное питание, а если даже и удастся вам спалить микросхему, то купить новую микросхему вообще не проблема.
Кстати вероятнее всего это все же копии ТДА2030a, но по работоспособности вопросов нет, все играют. Да, усилитель далеко не лучший в плане мощности, и радиатор ему нужен, но его легко собрать и он ремонтопригоден, что иногда важно. Кстати именно по звучанию к этому усилителю вопросов нет, это класс АВ, звучит качественно и по верхам и по низам. Автор покупал этот усилитель именно из-за простоты, все хорошо, все работает. А дальше уже можно на базе этого усилителя попробовать собрать и домашний усилитель или колонку портативную и т.д. Это уже по желанию. На этом, пожалуй, все. Благодарю за внимание. До новых встреч!
Видеоролик автора:
Источник
Купить Kit-набор на Aliexpress
Доставка новых самоделок на почтуПолучайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Простейший двухканальный УНЧ на LA4597
admin 04 ноября 2019 г.
Двухканальный усилитель звуковой частоты на базе интегральной микросхемы LA4597 включает в себя минимум компонентов и поэтому может стать устройством начального уровня для тех, кто решил заняться электроникой. Микросхема имеет защиту от перегрева, а также функцию спящего режима Stand-By.
Основные характеристики микросхемы LA4597
Рабочее напряжение ………. 4.2÷16В
Рекомендуемое сопротивление нагрузки ……… 3.2Ома
Выходная мощность (THD=10%, Vcc=9В, Rout=3.2Ома) ………. 2.9Вт
Количество каналов ………. 2
Графики зависимостей и другие характеристики представлены в Datasheet.
Схема простейшего двухканального усилителя
Конструктивно монтаж выполнен на односторонней печатной плате размером 45×45мм. На фотографиях можно заметить, что я использовал переключатель с тремя припаянными проводами, но чтобы не вводить вас в заблуждение, задействованы только два провода.
При замыкании контактов SA1, микросхема LA4597 активизируется, вступая в активный режим. Вместо ключа SA1 можно впаять перемычку, тогда при подаче напряжения питания на, усилитель будет включаться автоматически.
После монтажа необходимо тщательно смыть остатки флюса и проверить печатную плату на предмет замыкания дорожек кусочками олова.
Печатная плата двухканального УНЧ на LA4597 СКАЧАТЬ
Похожие статьи
Усилитель звука 35+35Вт из модулей с темброблоком, USB, Radio, Aux
Приветствую, Самоделкины!Из этой статьи вы узнаете, как собрать один из вариантов хорошего бюджетного и достаточно мощного стереоусилителя звука с темброблоком, USB, Radio, а также AUX. Стереоусилитель мы будем собирать из готовых китайских модулей, так что такой проект сможет повторить даже начинающий радиолюбитель.
Для сборки этого усилителя автор (YouTube канал «Radio-Lab») подобрал и приобрел следующие модули. За усиление звука будет отвечать вот такой усилитель на базе микросхемы ТРА3116D2.
Данный усилитель способен отдать примерно до 35Вт мощности на канал практически без искажений при напряжении питания 24В. За регулировку громкости, низких и высоких частот будет отвечать вот такой темброблок на широко распространенной микросхеме LM1036.
Также будем использовать вот такой вот врезной звуковой модуль.
Модуль довольно простой, поддерживает воспроизведение с USB носителя, также имеет радиоприемник и не обделен линейным входом. Версия врезного модуля в данном случае на 12В, это видно по наличию на плате понижающего 5-ти вольтового стабилизатора 78М05.
В качестве источника питания будем использовать импульсный блок питания от сети переменного напряжения 220В с напряжением на выходе 24В и током 4А.
Все модули автор подобрал так, чтобы их можно было без особого труда соединить друг с другом. У всех модулей однополярное питание и даже начинающий радиолюбитель сможет повторить данный проект.
Схема подключения будет дальше, ближе к тестовому включению, т.к. тоже не всегда все с первого раза получается. Теперь давайте займемся сборкой всех компонентов в одно целое. Начнем с подключения врезного модуля к темброблоку, просто так удобнее. На темброблоке присутствует понижающий стабилизатор L7812 с выходом на 12В. Он питает микросхему LM1036, а также от него можно запитать врезной модуль, что мы собственно и сделаем.
Стабилизатор L7812 линейный и во время работы он прилично нагревается. Для его охлаждения на данный стабилизатор необходимо установить небольшой радиатор.
Для питания на врезном модуле предусмотрен специальный отдельный разьем плюс (+) и минус (-). Для удобства автор дополнительно обозначил плюс (+), завязав на нем узелок.
Оба эти провода необходимо, соблюдая полярность, припаять на минус и выход 12В стабилизатора L7812 на темброблоке.
Также звуковой линейный выход со звукового модуля необходимо припаять на вход темброблока.
На звуковом модуле имеется антенный провод (он красный) и 3 провода линейного выхода: левый канал, общий и правый канал.
Сперва припаяем провода питания врезного модуля к выходу микросхемы L7812 на темброблоке. Вот так это теперь выглядит.
Провод линейного выхода необходимо припаять на вход темброблока, вот прям как есть, не перекрещивая провода, тут тоже ничего сложного.
Все, звуковой модуль и темброблок соединили. Это, пожалуй, был самый сложный этап в этой сборке.
На линейном входе платы усилителя звука прямо из комплекта шел нормальный экранированный провод с разъёмами. Поэтому наша задача упрощается, просто берем этот провод и подключаем его на выход темброблока, разъём, как видите, подходит.
По звуку все. Все провода подключены. Сначала сигнал со звукового модуля идет на темброблок, по желанию регулируется/настраивается, а затем поступает на усилитель.
Теперь нам необходимо подключить усилитель и темброблок к источнику питания. Для этой задачи отлично подойдут вот такие цветные провода сечением 2,5 квадрата.
Первым делом подключаем провода питания к темброблоку. На нем присутствует диодный мост, потому полярность подключения в данном случае не критична. Красный провод пусть будет плюс, а синий – минус.
Все, провода питания к темброблоку мы подключили, теперь займемся усилителем. Тут уже необходимо строго соблюдать полярность, плюс и минус подписаны на самой плате.
Красный провод здесь так же плюс, а синий — минус. Следующим шагом подключаем провода питания усилителя и темброблока к выходу блока питания, при этом обязательно соблюдаем полярность. Подключать питание усилителя и темброблока необходимо параллельно. Для этого берем вместе оба красных провода и подключаем на плюс блока питания.
Синие же провода таким же образом соединяем вместе и подключаем их также к блоку питания, но уже на минус (-).
Провода питания усилителя и темброблока от блока питания подключены. Ну что, все сделали, все модули подключены между собой. Как видите ничего сложного тут в принципе нет, главное в этом деле никуда не торопиться и все внимательно проверять.
Теперь давайте запитаем нашу сборку от сети 220В. Для этого автор использует вот такой провод с вилкой.
Подключаем один конец этого провода к входу 220В блока питания.
Важно! На блок питания будет поступать высокое напряжение 220В, это опасно и потому соблюдение правил техники безопасности обязательно!
Включаем вилку в сеть и как видим все модули без исключения сигнализируют нам о наличии питания светящимися светодиодными индикаторами.
Это хороший знак и как минимум по питанию у нас ошибок нет, все собрано верно. Ну а чтобы провести полную проверку работоспособности необходимо к выходам усилителя подключить колонки. Автор использует такие: Радиотехника S-30B.
К выходам усилителя подключили провода колонок.
Теперь пробуем подать питание на сборку уже с подключенными колонками.
При включении слышен не громкий, но все же хлопок. Все хорошо, музыка в колонках есть, а это значит схема рабочая. Но при этом довольно отчетливо слышен посторонний фон от работы процессора врезного модуля, что мешает на низкой громкости и желательно бы от него избавиться. Для этого достаточно установить по питанию на звуковом модуле дополнительный электролитический конденсатор емкостью 2200мкФ.
Минусовую ногу конденсатора припаиваем на минус питания модуля, а плюсовую на выход микросхемы 78М05.
Так же на темброблоке автор снял провода питания с клеммника и, соблюдая полярность, припаял их после диодного моста на фильтрующий конденсатор питания темброблока, как бы минуя диодный мост.
И после доработки снова подаем питание на всю конструкцию.
Ну вот, постороннего шум отсутствует. Это, согласитесь, отлично! Радио работает, стерео, но для более уверенного приема необходима антенна побольше. Но тем не менее все работает, все хорошо.
Теперь подключим флешку с тестовой музыкой. В тембролоке есть тонкомпенсация и это плюс. Пробуем покрутить регуляторы на темброблоке. Регулировки есть и работают нормально.
Все отлично играет, сборка усилителя получилась. Более подробно о процессе сборки, а также тестовых испытаниях вы узнаете, посмотрев видеоролик автора:
Кстати вот как выглядит финальная схема подключения модулей:
Для данной сборке автор постарался подобрать бюджетные компоненты, т.к. задача была собрать нормальный бюджетный усилитель, и чтобы его смог повторить любой желающий. Усилитель, кстати, играет громко и без труда раскачивает данные тестовые колонки, в квартире, по словам автора, все это звучит достаточно громко, без искажений. Мощность на выходе примерно 35Вт на канал при нагрузке в 4Ом, чего более чем достаточно для большинства при домашнем использовании.
Осталось все это установить в корпус, добавить разъёмы и вот вам хоть и бюджетный, но нормальный полноценный готовый усилитель звука для дома или небольшого помещения. Для начинающих, чтобы не работать с высоким напряжением 220В, вместо блока питания 220В можно использовать, например, литий-ионный аккумулятор с напряжением 12В. Работает тоже все отлично, разве что мощность усилителя на выходе будет немного ниже. Кстати, вот вам идея для сборки портативной колонки. Пробуйте, собирайте и повторяйте.
Благодарю за внимание. До новых встреч!
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Усилитель для наушников tda2822
TDA2822 представляет собой интегрированный звуковой усилитель, который можно использовать как в моно, так и в стерео режиме. Усилитель на этой микросхеме предназначен для применения там, где необходимо небольшое аудио усиление, с малым током потребления, например, его можно использовать как усилитель для наушников. Есть у меня такие наушники, они нормально играют от компьютера, а вот при прослушивании музыки с телефона явно не хватает мощи, подключив такой усилок громкость повышается в разы и еще остается запас.
Напряжение питания: 1,8 – 15 Вольт
Максимальная выходная мощность: 1,4 Watt
Ток потребления при нагрузке: R=32 Ohm и U=6 V в режиме покоя 0.1 mA, а при работе колышется в пределах 10-20ма.
Чуть выше вы видите схему небольшого усилителя с использованием TDA2822. Громкость звука можно регулировать с помощью переменного резистора на 10 кОм. Источник питания 12 вольт будет идеально подходить для питания схемы (будет самая высокая выходная мощность, без учета сопротивления динамиков), но она будет работать и от меньшего напряжения. Микросхема не греется вообще, поэтому теплоотвод использовать не нужно. На первой плате под вход, выход и питание выведены отдельные крупные винтовые крепежи.
Печатную плату можно скачать тут: pcb2822.rar [19.59 Kb] (скачиваний: 1488)
Вот вам еще одна схема включения данной микросхемы, а также две печатные платы, которые более удобны для изготовления именно усилителя для наушников, на одной из них нижние резисторы и конденсаторы поверхностного монтажа, а на второй DIP. На них нарисованы дорожки для гнёзд под jack 3,5 мм, вы легко можете под редактировать дорожки и пятачки под свои разъёмы. С такой платкой подключать её к телефону (источнику аудио-сигнала) нужно через специальный провод с двумя джеками, а наушники соответственно в разъём на плате.
pcb2822.rar [19.59 Kb] (скачиваний: 1488)
Я решил сделать усилитель по второй схеме с использованием резисторов (10k, 4,7) и керамических конденсаторов 100 нФ для поверхностного монтажа (smd). На фото дорожки нарисованные цапонлаком и парнаментным маркером и готовая плата после вытравки в хлорном железе.
Регулирование громкости звучания от самого источника аудио-сигнала вас расстроит, в моём случае это качелька громкости телефона, слишком маленький диапазон. Чтобы улучшить изменение силы звучания его добавьте миниатюрный переменный резистор сопротивлением примерно 10-50 кОм для регуляции силы входного аудио.
Идеально для моей платы подошёл корпус NM5 с размерами 57x38x19 и смешной ценой. Плата в него влезает идеально, для гнёзд входа и выхода просверливаем отверстия нужного диаметра. В корпусе еще остается место для источника энергии. На мой взгляд, лучше всего туда будет запихнуть литий-полимерный аккумулятор вместе с модулем зарядки, к примеру, от юсб. В итоге мы получаем отличный, удобный, компактный усилитель для наушников и небольших динамиков за мизерную цену.
Этот усилитель я использовал для небольших компьютерных наушников, звучание оказалось довольно неплохое, но при большой громкости качество звука заметно падает. Собрал схему, как видите, используя TDA2822 в DIP-8 корпусе, а на плату для удобства припаял колодку. От сопротивления наушников и напряжения питания будет зависеть выходная мощность, нам много не надо, не хотим же мы оглохнуть. Желательно, чтобы динамики были 2x1W/4 Ohm.
Ну и на последок скажу, что такую схему рекомендую собирать только новичкам. Нереального качественного звука, как от промышленных и дорогостоящих усилителей от него вы не добьётесь, но простому обывателю и этого хватает с головой. Вот вам видео для ознакомления со свойствами выходного звука от такой схемы.
Доставка новых самоделок на почтуПолучайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Предварительный усилитель Hi-Fi на NE5532 своими руками
Приветствую, Самоделкины!
После проведения замеров усилителей звука на микросхемах TPA3116, автор YouTube канала «Radio-Lab» заметил, что некоторые усилители при подключении, например, к телефону или bluetooth модулю играют не в полную мощность, по замерам это видно.
Это касается и других усилителей. Связано это с тем, что некоторые усилители имеют невысокую чувствительность по входу. В итоге телефон или врезной модуль просто не могут раскачать такие усилители имея недостаточно мощный уровень выходного сигнала. Если усилитель нужно раскачать на полную, как вариант используют предварительные усилители или сокращенно предусилители. Предусилитель повышает уровень аудиосигнала от источника и потом уже усиленный сигнал идет на основной усилитель, и основной усилитель звука уже может играть в полную силу. По принципу работы очень похоже на слуховой аппарат, но для усилителя.
На некоторых моделях усилителей такой проблемы нет, на плате уже с завода есть встроенный предусилитель или он вообще не нужен.
Если вы уверены, что усилитель играет тихо именно потому, что слабый входной сигнал, то предусилитель можно докупить или собрать самому как отдельную плату и подключить проводами к основному усилителю звука.
В этой статье речь пойдет о том, как самостоятельно своими руками собрать предусилитель. Схема с однополярным питанием была найдена в интернете, хотя разных много.
Характеристики следующие:
Схема подключения такая:
Необходимые детали:
Для данного проекта автор изготовил печатную плату. Плата получилась компактной, для будущего предусилителя в самый раз.
На радиорынке были куплены необходимые радиодетали (можно заказать из Китая, но там их продают в основном пачками, да и ждать довольно-таки долго).
За усиление будет отвечать популярный сдвоенный операционный усилитель NE5532.
Сборку автор решил начать с установки постоянных резисторов. Чтобы не напутать с номиналами, он использует тестер радиодеталей. Для этого необходимо установить резистор в тестер и спустя буквально секунду тестер показал номинал 1кОм.
Ножки резистора загибаем так, чтобы установить деталь вертикально.
Затем ставим резистор на свое место и фиксируем паяльником. Далее припаиваем вторую ножку и потом запаиваем остальные 3 резистора номиналом 1кОм на свои места. После этого припаиваем 4 резистора по 220кОм и один на 100кОм.
Из обрезков ножек делаем перемычку и ставим ее на свое место. Далее устанавливаем на свои места конденсаторы, многослойный и дисковые. По ключу устанавливаем микросхему.
Подстроечных резисторов 2, каждый на свой канал, их места по бокам платы.
Электролитические конденсаторы нужно устанавливать обязательно соблюдая полярность. Устанавливаем их на плату в соответствии со схемой.
И вот, все необходимые детали установлены. Можно сказать, что предусилитель собран.
Напряжение питания от 6 до 16В, но в данном случае автор планирует его питать напряжением 24В, как и усилитель. Это уже для предусилителя много и нужно использовать понижающий стабилизатор. При питании от импульсного преобразователя были шумы, потому автор решил использовать линейный стабилизатор на 12В L7812.
В соответствии с распиновкой запаиваем стабилизатор на плату, а также припаиваем провода питания.
Теперь предусилитель собран. Вот такая небольшая плата получилось.
Плата стерео, на 2 канала. Для проверки на входы и выходы припаиваем экранированные провода чтобы не было помех. Посредине общий провод, рядом по бокам входы и ближе к краям выходы.
Для проверки автор запитал усилитель от аккумулятора, а сигнал будет видно на осциллографе. Источником синусоиды будет телефон. Подключаем осциллограф сначала на выход телефона. Максимально уровень выходного сигнала с телефона составил примерно 0,5В. Вот такая картина на максимальной громкости.
Теперь подключаем осциллограф на выход предусилителя. Питание предусилителя есть и проверяем его работоспособность. Под ее синусы поднимаем громкость и можно увидеть, что на выходе синус тоже есть и его уровень в разы больше, чем было с телефона. Это уже примерно 2В.
Уже можно сказать, что собранный предварительный усилитель работает и усиливает. Если входного сигнала много, то есть клиппинг.
Затем подключаем на второй канал.
И тут тоже синусоида есть. Также попробуем изменить частоту. Все работает, на плате есть две подстройки уровня, что позволяет настроить необходимый уровень усиления.
Сама синусоида без искажений, по предварительному усилителю все хорошо. Теперь давайте попробуем подключить его к усилителю. Как тестовый автор взял усилитель на 2-ух микросхемах TPA3116 и блок питания на 24 вольта для него.
На выходе почти 24В. В качестве нагрузки будет вот такой проволочный резистор на 4Ом.
На него подключен осциллограф чтобы видеть форму сигнала на выходе усилителя. Чтобы показать разницу сначала подадим сигнал напрямую с телефона, затем поднимаем громкость и напряжение на выходе усилителя получилось примерно 10В.
В пересчете на мощность, это примерно 25Вт. Вот на такую мощность данный телефон может раскачать этот усилитель при нагрузке в 4 Ома. А теперь все то же самое, но уже с предварительным усилителем, включенным между телефоном и усилителем. Все подключаем и поднимаем громкость.
Можно увидеть, что теперь сигнал на выходе усилителя уже выше, и это примерно 14,5В. В пересчете на мощность, это примерно 53Вт, что уже вдвое выше чем было. Если громкость поднять сильно, то уже наблюдается клиппинг.
Все расчеты примерные, но суть думаю понятна. Теперь этот усилитель на TPA3116 в паре с предусилителем может отдать максимальную мощность. А также предусилитель можно питать напрямую от усилителя. Для этого соблюдая полярность, подключаем провода питания предусилителя параллельно на провода питания усилителя.
Понижающий стабилизатор едва теплый. Запитали, теперь поднимаем громкость.
Все тоже самое, только от одного питания. Посторонних шумов нет, все хорошо. Собранный предварительный усилитель работает отлично. Его можно использовать и с другими усилителями, TPA3116 был взят автором для примера. Если чувствительность входа усилителя недостаточная, то одним из решений может быть установка предварительного усилителя. Но опять же нужно понимать, что может у вас усилитель слабый и установка предусилителя в этом случае проблему не решит, вы просто загоните свой усилитель в клиппинг, будут просто большие искажения и все. А так все работает, можете собирать и повторять. Плата универсальна и подойдет для многих усилителей звука. Этот предварительный усилитель один из многих, есть и другие. Полезные ссылки будут в описании под видеороликом автора (ссылка ИСТОЧНИК).
Благодарю за внимание. До новых встреч!
Видео:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Мощный мини усилитель звука на TPA3118. Испытание, подключение, применение
Приветствую, Самоделкины!В этой статье автор YouTube канала «Radio-Lab» продемонстрирует, как своими руками и без особых затрат самостоятельно собрать свою акустическую систему на готовом, достаточно мощном, но компактном усилителе звука на базе микросхемы TPA3118 с Bluetooth и AUX.
Главной деталью данного проекта является вот такой вот пакетик.
Вернее, не сам пакетик, а то, что находится внутри. А скрывается там стереоусилитель звука D класса на базе микросхемы TPA3118.
Данная плата уже имеет на борту технологию беспроводной передачи данных – Bluetooth. Также плата оснащена линейным входом AUX.
Такую плату можно приобрести на Aliexpress. В пакете, помимо самого усилителя звука, был и радиатор, который можно приклеить на основную микросхему усилителя ТРА3118, в случае если та будет сильно нагреваться.
Плата усилителя звука выполнена в черном цвете, номер платы: VHM-306. К качеству пайки претензий нет, все нормально.
Данная плата усилителя звука достаточно компактная и имеет следующие размеры: 70мм Х 52мм.
На изображении ниже представлены основные характеристики этого усилителя звука.
Основная микросхема данного усилителя звука — это ТРА3118.
Плату условно можно разделить на две части: сверху находится Bluetooth модуль и линей вход AUX, а снизу – непосредственно сам усилитель звука. Питается Bluetooth модуля происходит через линейный понижающий стабилизатор 78М05.
На противоположной стороне от линейного понижающего стабилизатора расположен линейный вход под стандартный миниджек (штекер 3,5 мм).
В нижней части платы, по центру находятся контакты для подключения источника питания.
Также на плате присутствует защитный диод, который защищает усилитель от переполюсовки. Рядом по бокам находятся контакты для подключения динамиков, левого и правого соответственно.
С внешним видом, габаритами и основными характеристиками разобрались, теперь попробую запитать этот усилитель звука. В качестве источника питания можно использовать как литий-ионный аккумулятор, так и блок питания от сети переменного тока 220В с напряжениями на выходе от 12 до 26В.
Для тестов автор взял литий-ионный аккумулятор, состоящий из трех элементов Li-ion батарей формата 18650. Суммарной напряжение на выходе получается порядка 12,5В.
Соблюдая полярность, автор временно припаял аккумулятор к контактам питания усилителя.
Как видим, на плате загорелся синий светодиод, служащий индикатором наличия питания (включения платы усилителя).
Следующим шагом давайте проверим как работает модуль Bluetooth на данном усилителе. Для этого нам понадобится смартфон.
Телефон увидел новую плату и без проблем к ней подключился. Индикатор начал мигать короткими вспышками. Такое поведение светодиода сигнализирует об успешном сопряжении устройств.
Перед подключением акустики, автор решил провести замеры мощности на выходе на нагрузку 4Ом, чтобы посмотреть на что способен этот усилитель звука. Для этого на выход одного из каналов был запаял нагрузочный резистор 4Ом.
Для мониторинга синусоиды, а также клиппинга, на контакты резистора необходимо установить щупы осциллографа.
В специальной программе на смартфоне автор настроил частоту в 1кГц, форма сигнала синусоида.
Схема собрана, усилитель подключен к источнику питания. Подаем с телефона на усилитель сигнал с заранее выбранной частотой и пробуем увеличить громкость.
На осциллографе синусоида есть, а также присутствует и клиппинг. В работоспособности убедились, можно приступать непосредственно к замерам мощности данного звукового усилителя. И так, первый замер при питании от аккумулятора 12В. На выходе усилителя без клиппинга получилось примерно 6,5В.
Далее квадрат напряжения необходимо разделить на сопротивление нагрузки, в данном случае 4Ом, и в результате получаем мощность на выходе, она примерно составляет 10Вт на канал.
Это значение, напомню, мы получили при питании платы усилителя от литий-ионного аккумулятора с напряжением 12В. Следующим этапом давайте попробуем произвести замер при питании от блока питания от сети 220В с напряжением на выходе 24В.
Остальное все тоже самое, только напряжение питания уже не 12В, а 24В. Убеждаемся в наличии на осциллографе синусоиды и клиппинга и производим замер.
Итак, после поднятия громкости напряжение на выходе без клиппинга составило уже примерно 14В.
Производим аналогичный расчёт, и получаем цифру 49, а это означает, что мощность на выходе составила уже около 50Вт на канал.
Это при питании платы от блока питания, напряжение которого составляет 24В. Согласитесь, что мощность весьма немаленькая и очень достойная при таком компактном размере.
Итак, после проведенных экспериментов можно сделать следующие выводы: работает усилитель и от 12В и от 24В, но если вы хотите взять максимум мощности с данного усилителя, то его необходимо питать напряжением 24В.
Во время эксперимента больше всего нагрелись выходные дросселя и стабилизатор 78М05 для питания Bluetooth модуля. Нагрев микросхемы усилителя даже без радиатора был незначительным.
Но больше всех грелся конечно же нагрузочный резистор. Теперь осталось подключить акустику и послушать, как играет этот усилитель. Для теста автор будет использовать вот такие автомобильные динамики м сопротивлением 4Ом в количестве 2-ух штук.
Данные динамики — это клоны Пионеров. Провода от динамиков необходимо припаять к выходам левого и правого каналов соответственно. Схема подключения проста до безобразия. Провода питания от блока питания припаяны к соответствующим контактам, расположенным на плате усилителя. Также припаяны провода динамиков на выходы усилителя.
В общей сложности в данной схеме у нас всего 6 проводов, проще, наверное, не бывает. Включаем блок питания в сеть 220В.
При подаче питания на схему усилителя звука, хлопок в динамиках отсутствует. Присутствует голосовая озвучка на английском языке. Подключаем телефон к усилителю с помощью технологии Bluetooth и включаем тестовый трек.
Все прекрасно работает, из динамиков звучит музыка, на минимальной громкости посторонние шумы отсутствуют. Более подробный обзор и тесты данного усилителя звука смотрите в оригинальном видеоролике автора:
Тест на максимальную громкость тоже успешно пройдет, играет система довольно громко.
При работе системы от литий-ионного аккумулятора с напряжением 12В тоже все отлично, только мощность соответственно будет ниже.
Через линейный вход усилителя тоже все нормально работает. Но линейный вход и Bluetooth подключены на вход усилителя вместе, и при проигрывании музыки одновременно и с Bluetooth и с линейного входа все сливается и в динамиках на выходе уже играет все вместе.
Плюс такой реализации состоит в том, что можно, например, в линейный вход подключить микрофонный усилитель, а по Bluetooth включать минусовки и вот вам собственно система караоке, то есть можно смешивать (миксовать) источники звука.
Не смотря на довольно скромные размеры, этот усилитель обладает достаточной мощностью. Подключать его предельно просто, играет хорошо и при этом достаточно громко. Подключить этот услитель и собрать своими руками полноценную звуковую систему смогут без проблем даже те, кто не особо разбирается в электронике, тут главное не спешить и следовать приведенной в данной статье инструкции чтобы ничего не напутать.
Наверное, лучше всего этот усилитель подходит для сборки самых разных портативных колонок с хорошей мощностью. Так же без проблем можно собрать и стационарные усилители или колонки для дома и много всего другого тоже. Здесь уже все ограничено только вашей фантазией и конкретными задачами. На этом все. Благодарю за внимание. До новых встреч!
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.УСИЛИТЕЛИ МОЩНОСТИ НИЗКИХ ЧАСТОТ НА МИКРОСХЕМАХ
Усилители, основным назначением которых является усиление сигнала по мощности, называют усилителями мощности. Как правило, такие усилители работают на низкоомную нагрузку, например, громкоговоритель.
Через выходные транзисторы таких микросхем протекают большие токи, микросхемы заметно нагреваются при длительной работе. Поэтому для обеспечения нормальных условий эксплуатации микросхемы усилителей мощности обязательно устанавливают на теплоотводящие радиаторы. Современные микросхемы усилителей мощности имеют защиту от перегрева и короткого замыкания нагрузки.
Пример практической схемы УНЧ, реализующий использование внешнего выходного транзисторного каскада, приведен на рис. 31.1
[31.1.31.2] .
Усилитель НЧ, предназначенный для использования в связном приемнике (рис. 31.1) с выходным каскадом на транзисторах КТ814А и КТ815А
[31.2] на нагрузке 8 Ом развивает мощность 110—120 мВт, потребляя в режиме покоя ток всего 0,6 мА. Чувствительность усилителя — 10 мВ. Конденсатор СЗ выбран из соображений обеспечения частоты среза АЧХ на частоте 3,0—3,4 кГц. Коэффициент усиления выходного каскада опре-
Рис. 31.1. УНЧ на микросхеме К140УД1208
деляется соотношением резисторов R8/R10. Номинал резистора R6 подбирают по минимуму потребляемого тока покоя и приемлемому уровню искажений.
Рис. 31.2. Схема стереофонического предусилители на микросхеме LM387AN
При использовании транзисторов КТ502 и КТ503 (или КТ3107 и КТ3102) и сопротивлении нагрузки 50 Ом ток покоя составляет 0,5—0,6 мА, выходная мощность усилителя ниже [31.1].
Рис. 31.3. Схема стереофонического предусилителя на микросхеме pA749D
Микросхема LM387AN предназначена для использования в качестве предусилителя стереофонической радиоаппаратуры. Номинальное напряжение питания микросхемы — 12 В при токе потребления 10 мА, максимальное — 30 В. Полоса усиливаемых частот от 20 Гц до 1,8 МГц с коэффициентом гармоник не свыше 0,1 %. Коэффициент усиления — до 104 дБ. Входное сопротивление — 100 кОм. Разновидность микросхемы LM387AN выпускается также в круглом корпусе ТО-99 (с сохранением номеров цоколевки). Коэффициент передачи предусилителя (рис. 31.2) определяется соотношением резистивных элементов R1—R3 и R4—R6 для каждого из каналов.
Ухудшенным аналогом микросхемы LM387AN служит микросхема μΑ749Ό (рис. 31.3). Номинальное напряжение питания этой микросхемы — 12 В при токе потребления 3 мА, максимальное — 24 В. Полоса усиливаемых частот от 20 Гц до 20 кГц с коэффициентом гармоник не свыше 0,1 %. Коэффициент усиления — до 86 дБ. Входное сопротивление — 150 кОм. Следует учитывать, что микросхема под маркировкой μΑ749ΌΗΟ выпускается также в круглом корпусе ТО-99 (с сохранением номеров цоколевки), а под маркировкой μΑ749Ω8 — в корпусе DIP14.
Линейный предусилитель на микросхеме ΑΝ127, работающий в полосе частот 20 Гц—1,8 МГц при напряжении питания 1,3—5 В при потребляемом токе 1,2 мА, показан на рис. 31.4. Входное сопротивление усилителя — 3 кОм, выходное — 500 Ом, выходное напряжение — 0,1 В, коэффициент усиления — 57 дБ. Недостаток усилителя — повышенный коэффициент нелинейных искажений — до 1,8 %.
УНЧ с выходной мощностью до 1 Вт, рассчитанный на работу с нагрузкой 8 Ом при напряжении питания 12 В и токе покоя 7,5 мА может быть выполнен на микросхемах U410B и U821B. Первая из них способна работать при питающих напряжениях от 3 до 15 В, вторая — от 2 до 16 В в диапазонах частот при типовом включении 40—18000 и 50—20000 Гц, соответственно, рис. 31.5 и рис. 31.6.
Рис. 31.4. Схема линейного предусилителя на микросхеме AN 127
Рис. 31.5. Схема УНЧ на микросхеме’U410В
УНЧ на микросхеме ТВА820М (аналоги JJ820, LM820M, КА2201)У типовые схемы включения которых приведены на рис. 31.7 и рис. 31.8, обеспечивают выходную мощность до 1,8—2,0 Вт при напряжении питания 12 В. Полоса усиливаемых частот — 30(40) —
18000 Гц. Рекомендуемое сопротивление нагрузки 4 Ом. Напряжение питания УНЧ может составлять 3—16 В.
Рис. 31.6. Схема УНЧ на микросхеме U821В
Входное сопротивление микросхемы 5 МОм. Коэффициент усиления до 56 дБ.
Довольно простой предусилитель НЧ диапазона 20 Гц—20 кГц может быть собран на микросхеме ТВА880, рис. 31.9. Микросхема имеет 2 вывода питания, вход и выход. Номинальное напряжение питания 4,6 В (максимальное — 12 В) при потребляемом токе 18 мА. Входное сопротивление усилителя 12 кОм, выходное — 200 Ом. Коэффициент усиления — 46 дБ, коэффициент нелинейных искажений — до 5 %. Практически полным аналогом этой микросхемы служит микросхема ТСА980, отличающаяся только повышенным выходным напряжением.
Микросхема ТА7368Р фирмы Toshiba предназначена для создания простых УНЧ, рис. 31.10, рис. 31.11. Напряжение питания микросхемы может изменяться в пределах 2—10(14) В (номинальное 4 В). Выходная мощность при работе на сопротивление нагрузки 4 Ом достигает 1,1 Вт в полосе частот 20—20000 Гц при коэффициенте гармоник до 0,2 %.
Коэффициент усиления — 40 дБ. Входное сопротивление микросхемы 27 кОм.
Рис. 31.7. Схема УНЧ на микросхеме ТВА820М (U820)
УНЧ на микросхеме КР1064УН2 (аналоги ЭКР1436УН1, МС34119Р,
Рис. 31.8. Вариант схемы УНЧ на микросхеме ТВА820М (U820)
фирма Motorola) работает при напряжении питания 2—16 В (рис. 31.12, 31.13). Ток покоя составляет 4 мА. При включении ключа SA1 «Mute» потребляемый микросхемой ток снижается до тока утечки (порядка 65 мкА). Выходная мощность усилителя в диапазоне частот 50—16000 Гц на сопротивление нагрузки 8 Ом при напряжении питания 9 В достигает 250 мВт при коэффициенте гармоник 0,22 %. Коэффициент усиления — 46 дБ.
Вариант включения микросхемы МС34119Р приведен на рис. 31.14. Коэффициент усиления УНЧ определяется как 2R2/R1. Остальные характеристики такие же, как у аналогов, см. выше, однако ток покоя всего 2,7 мА. В качестве нагрузки можно использовать относительно высокоомные телефоны — 32 Ом.
Рис. 37.9. Схема усилителя на микросхеме ТВА880
Рис. 31.10. Эквивалентная схема микросхемы ТА7368Р
Рис. 31.12. Эквивалентная схема микросхем КР1064УН2 (ЭКР1436УН1, МС34119Р)
Рис. 31.11. Схема УНЧ на микросхеме ТА7368Р
Рис. 31.13. Схема УНЧ на микросхеме КР1064УН2
Рис. 31.14. Схема УНЧ на микросхеме МС34119Р
Рис. 31.15. Состав и цоколевка микросхем серии LM358, К1464УД1
Микросхемы серии LM358 (National Semiconductor Corporation, NSC), отечественный аналог — К1464УД1, состоят из двух операционных усилителей (рис. 31.15) в корпусе DIP8 (либо Т099, S08). Напряжение питания микросхемы — ±3 — ±32 В, коэффициент усиления — до 100 дБ [31.3].
На базе ОУ К1464УД1 может быть изготовлен генератор стабильных токов, имеющий несколько выходов, схема которого представлена на рис. 31.16 [31.3]. Резисторы Rl, R2 образуют делитель напряжения. Образцовое напряжение с этого делителя (иобр=3 В) поступает на вход ОУ Ток через транзистор VT1 создает падение напряжения на резисторе R3. Это напряжение служит сигналом отрицательной обратной связи ОУ, что стабилизирует ток через транзистор. Тогда
При больших коэффициентах передачи по току транзисторов можно принять 1э1=1э2; IKl=IK2. С транзистором КТ315Е источник может обеспечить выходной ток до 50 мА.
При конструировании магнитофонов актуальной остается проблема обеспечения
Рис. 31.16. Схема мульти- генератора стабильных токов
Рис. 31.17. Схема выходного каскада записи магнитофона (преобразователь напряжение- ток записи)
записи-воспроизведения верхних частот. Схемное решение, представленное на рис. 31.17, позволяет стабилизировать ток записи вне зависимости от частоты входного сигнала [31.4]. Для этого использован усилитель, выполняющий функцию преобразователя напряжения в ток.
На датчике тока R6 поддерживается постоянная разность напряжения во всем диапазоне звуковых частот. Величину этого тока можно регулировать подбором номинала этого резистора. Предельное напряжение на головке записи В1 ограничено размахом напряжения питания, поэтому для достижения верхней границы записи 22 кГц желательно на тран- зис горы выходного каскада подавать повышенное до ±30 В или более напряжение.
Микросхема LA4140 (фирма Sanyo) предназначена для использования в выходных каскадах монофонических магнитофонов, CD-плееров, а также радиоприемников. Типовая схема УНЧ с использованием этой микросхемы приведена на рис. 31.18. Микросхема может работать при напряжении питания 3,5—14 В на сопротивление нагрузки 16 Ом, при
Рис. 31.18. Схема УНЧ на микросхеме LA4140
сопротивлении нагрузки 8 Ом верхняя граница напряжения питания снижается до 12 В. Потребляемый усилителем ток при напряжении питания 6 В не превышает 11 мА. Выходная мощность при этом на сопротивление нагрузки 8 Ом достигает 500 мВт при КНЛ не выше 10 %. Коэффициент усиления — 50 дБ. Входное сопротивление — 15 кОм, уровень шума на выходе — 400 мкВ.
Более высокую выходную мощность имеет УНЧ на микросхеме LA4145, рис. 31.19. Напряжение питания усилителя на этой микросхеме — 3,6—8,0 В.
Рис. 31.19. Схема УНЧ на микросхеме LA4145
Рис. 31.20. Эквивалентная схема микросхем TDA10WA, TDA1011, TDA1015, TDA1020.
ПУ— предусилитель; УМ —усилитель мощности
Потребляемый ток при напряжении питания 6 В — 10 мА. Выходная мощность при КНЛ до 10 % и сопротивлении нагрузки 8 Ом — 600 мВт; при 4 Ом — 900 мВт. Коэффициент усиления — 50 дБ. Входное сопротивление — 30 кОму уровень шума на выходе — 600 мкВ.
Микросхема TDA1010A (Philips) предназначена для работы при повышенном напряжении питания (6—24 В), номинальное напряжение 14,4 В. Эквивалентная схема микросхем этой серии приведена на рис. 31.20, а типовые схемы практического использования — на рис. 31.21 и рис. 31.22. Выходная мощность УНЧ на микросхеме TDA1010A при сопротивлении нагрузки 2 Ом может достигать 9 Вт при коэффициенте гармоник 0,2 %. Коэффициент усиления может доходить до 54 дБ. Входное сопротивление — 20 кОм.
Рис. 31.21. Схема УНЧ на микросхеме TDA 1010А
УНЧ на микросхеме TDA1020 (рис. 31.22), обеспечивает выходную мощность 12 Вт на сопротивление 2 Ом; коэффициент гармоник 0,2 %, напря-
Рис. 31.23. Типовая схема включения микросхемы TDA 1011, TDA1015
Рис. 31.22. Вариант схемы УНЧ на микросхемах TDA1010А, TDA1020
усилитель) + 29 (усилитель мощности) = 52 дБ. Входное сопротивление свыше 100 кОм. Разновидность микросхемы в корпусе S08 — TDA1015T имеет иную цоколевку и «облегченные» характеристики (выходная мощность до 0,5 Вт при напряжении питания 9 В и сопротивлении нагрузки 16 Ом).
жение питания 14,4 В (автомобильный аккумулятор), пределы изменения напряжения питания 6—18 В. Коэффициент усиления 47,3 дБ — 17,7 (предусилитель) +
29.5 (усилитель мощности). Входное сопротивление — 40 кОм.
Микросхема TDA1011 (рис. 31.23), предназначена для работы при номинальном напряжении питания 16 В (пределы 3,6—24 В). Выходная мощность УНЧ при работе на сопротивление нагрузки 4 Ом составляет
6.5 Вт при коэффициенте гармоник 0,2 %. Коэффициент усиления — 52 дБ. Входное сопротивление — 200 кОм.
Микросхема TDA1015 (рис. 31.23) работает при номинальном напряжении питания 12 В (пределы 3,6—18 В). Выходная мощность УНЧ с сопротивлением нагрузки 4 Ом составляет 4,2 Вт при коэффициенте гармоник 0,3 %. При снижении напряжения питания до 9 (6) В выходная мощность падает до 2,3 (1,0) Вт.
Частотный диапазон усиления на уровне -3 дБ— 60—15000 Гц. Коэффициент усиления — 23 (пред-
Микросхема TDA1013B отличается от предшествующих по цоколевке (рис. 31.24) и, соответственно, схемой включения (рис. 31.25).
При напряжении питания 18 В выходная мощность на сопротивление 8 Ом — 4,2 Вт при Рис.31.24. Эквивалентная коэффициенте гармоник 0,2 %. Коэффициент схема микросхемы TDA101ЗВ
усиления — 38 дБ. Входное сопротивление — 200 кОм.
Рис. 31.25. Типовая схема включения микросхемы TDA101ЗВ
Микросхема TDA1518Q (Philips) способна отдавать в нагрузку при КНЛ 10 % мощность до 11 Вт и более (в зависимости от качества радиатора). Напряжение питания микросхемы 6—18 В, оптимальное
Рис. 31.26. Схема УНЧ на микросхеме TDA 1518Q
Рис. 31.27. Стереофонический УНЧ на микросхеме TDA 1518Q
14,4 В. Рекомендуемое сопротивление нагрузки 2 Ом. Микросхема допускает работу как в моно- так и в стереофоническом (двухканальном) режимах, рис. 31.26 и рис. 31.27. Коэффициент усиления в полосе частот 20—20000 Гц — 40 дБ. Ключ S1 предназначен для отключения микросхемы (режим «Stand-By»). Аналогом микросхемы TDA1518Q является TDA1516Q с пониженным до 20 дБ коэффициентом усиления и КНЛ 0,2 %.
При введении в УНЧ на микросхеме TDA1518BQ положительной обратной связи устройство, рис. 31.28, переходит в режим генерации, вырабатывая сигнал частотой около 2 кГц [31.5].
Рис. 31.28. Схема звукового генератора повышенной мощности на микросхеме TDA1518BQ
Микросхема TDA1553Q содержит два мостовых усилителя, схема которого представлена на рис. 31.29, к выходам которых без переходных конденсаторов возможно подключение низкоомных нагрузок (2×4 Ом). При напряжении питания 12—14,4 В, например, от автомобильного аккумулятора, выходная мощность на каждый канал может доходить до 22 Вт при КНЛ не свыше 0,2—0,5 %. Коэффициенту усиления — 26 дБ. Ключ S ι предназначен для переключения микросхемы в режим «Stand-By» (спящий режим).
Рис. 31.29. УНЧ на микросхеме TDA1553Q
На основе микросхемы TDA1553Q или ее аналога TDA1557Q может быть собран автомобильный усилитель мощности для аудио- плеера (рис. 31.30) [31.6]. Для питания аудиоплеера обычно используют напряжение порядка 2,8 В (две пальчиковые батареи). Это напряжение несложно получить при помощи стабилизатора напряжения, питаемого от аккумулятора автомобиля.
Примечание.
Оригинальность схемного решения, рис. 31.30, заключается в том, что стабилизатор напряжения одновременно управляет режимом «Stand-By» усилителя мощности.
Для перевода усилителя в этот режим достаточно отключить питание аудиоплеера. Тогда ток через резистор–датчик тока R3 прерывается, транзистор VT3 запирается, и вывод 11 микросхемы DA1 оказывается соединенным с общей шиной. Усилитель отключается. Для снижения уровня помех в цепи питания усилителя следует установить помехоподавляющий дроссель.
Микросхема TDA2822 (Philips), предназначена для сборки простых моно- или стереофонических УНЧ (рис. 31.31 и 31.32), работающих в полосе частот 30 Гц — 18 кГц с выходной мощностью на канал до 1,8 Вт при напряжении питания 6 В. Допустимый диапазон питающих напряжений — 3—15 В.
Рис. 31.30. Схема стереофонического усилителя мощности для аудиоплеера на микросхеме TDA1553
Примечание.
Аналогичную схему имеет микросхема TDA2822M, однако она выполнена в ином корпусе и имеет иную цоколевку и характеристики (пониженную до 0,65 Вт выходную мощность).
УНЧ на микросхеме TDA2006, включенный почти по типовой схеме (рис. 31.33), работает от источника питания напряжением 4,5—13,5 В
[31.7]. Коэффициент его усиления можно плавно регулировать потенциометром R4. Входное сопротивление усилителя — порядка 100 кОм.
Рис. 31.31. Типовая схема стереофонического УНЧ на микросхеме TDA2822
Рис. 31.32. Типовая схема одноканального УНЧ на микросхеме TDA2822
Рис. 31.33. Схема УНЧ на микросхеме TDA2006
Типовые схемы включения микросхемы1TDA7050 (фирма Philips) в двух- и одноканальных УНЧ показаны на рис. 33.34 и рис. 33.35 [31.8]. Напряжение питания микросхемы может составлять 1,6—6,0 В. Ток покоя при напряжении питания 3,0 В 3,2 мА. Коэффициент усиления по напряжению 32 дБ (мостовой режим) 26 дБ (стереорежим). Предельная рабочая частота до 500 кГц. Выходная мощность в мостовом режиме при напряжении питания 3,0—4,5 В и коэффициенте нелинейных искажений до 10 % около 140—150 мВт. В стереорежиме — 35 и 75 мВт при напряжении питания 3,0 и 4,5 В. Входное сопротивление — 1 МОм. Сопротивление нагрузки в мостовом режиме — 8—64 Ом, рис. 31.34, в стереорежиме — 32 Ом, рис. 31.35.
В моноканальном включении нагрузка (электродинамический громкоговоритель) включена по мостовой схеме, поэтому необходимость использования переходных конденсаторов, ограничивающих частотный диапазон, отпадает.
Монофонический мостовой УНЧ на микросхеме TDA7052 (рис. 31.36, рис. 31.37) может работать в диапазоне питающих напря-
Рис. 3 Ί.34. Двухканальный УНЧ на микросхеме TDA7050
Рис. 31.35. Схема монофонического УНЧ на микросхеме TDA7050
жений 3—18 В (номинальное — 6 В) [31.8]. Максимальный потребляемый ток — 1,5 А при токе покоя 7 мА (при 6 В) и 12 мА (при 18 В). Коэффициент усиления по напряжению 36,5 дБ. Полоса пропускания усилителя на уровне —1 дБ 20 Гц — 300 кГц. Номинальная выходная мощность при коэффициенте нелинейных искажений 10 %
1,1 Вт. Входное сопротивление 100 кОм. Сопротивление нагрузки 8 Ом.
Мостовой стереофонический УНЧ (рис. 31.38) на микросхеме TDA7053, также способен работать в диапазоне питающих напряжений 3—18 В (номинальное 6 В при токе покоя 9 мА). Выходная мощность на канал при напряжении питания 6 В и сопротивлении нагрузки 8 Ом — 1,2 Вт (коэффициент нелинейных искажений 10 %). Полоса частот 20—20000 Гц. Максимальный потребляемый ток до 1,5 А. Входное сопротивление 100 кОм. Сопротивлейие нагрузки 8—32 Ом.
Рис. 37.36. Схема УНЧ на микросхеме TDA7052
Рис. 31.37. Вариант схемы УНЧ на микросхеме TDA7052A с регулятором громкости
Рис. 31.38. Схема стереофонического УНЧ на микросхеме TDA7053
УНЧ на микросхеме TDA7231 (рис. 31.39) может работать при напряжении питания 1,8—15 В,. При напряжении питания 12 В выходная мощность на нагрузку 4 Ом достигает 1,6 Вт в диапа-зоне частот 40—18000 Гц. Ток покоя микросхемы — около 4 мА.
Рис. 31.40. Цоколевка микросхем TDA7233, TDA7233D
Рис. 31.39. Схема УНЧ но микросхеме TDA7231
Микросхемы TDA7233, TDA7233D (ST Microelectronics) с выходной мощностью до 1 Вт предназначены для портативных экономичных бытовых звуковоспроизводящих приборов, рис. 31.40 и рис. 31.41 [31.9, 31.10].
Примечание.
Цоколевка микросхем, выполненных в корпусах Minidip и S08, отличается друг от друга, а именно, для микросхемы TDA7233 выводы Зи4 (питание!) в отличие от TDA7233D поменяны местами, рис. 31.40.
Диапазон рабочих напряжений микросхем составляет 1,8—15 В. При напряжении питания 6 В коэффициент усиления — 39 дБ. Диапазон частот 22 Гц—22 кГц. Входное сопротивление 100 кОм. Сопротивление нагрузки 4(8) Ом. Микросхемы имеют вывод — 2 «Mute» («Отключено»), что позволяет при замыкании этого вывода на общий провод (переключатель SA1) экономить ресурс элементов питания или
Рис. 31.41. Типовая схема монофонического УНЧ на микросхеме TDA7233D
Рис. 31.42. УНЧ удвоенной выходной мощности на микросхемах TDA7233D
временно отключать звуковое сопровождение. Удвоить выходную мощность УНЧ на микросхемах TDA7233D можно при их включении по схеме, представленной на рис. 31.42 [31.10]. Конденсатор С7 предотвращает самовозбуждение устройства в области
высоких частот. Резистор R3 подбирают до получения равной амплитуды выходных сигналов на выходах микросхем.
Рис. 31.43. Структурная схема микросхемы КР174УНЗ 7
Микросхема КР174УН31 предназначена для использования в качестве выходных маломощных УНЧ бытовой РЭА.
При изменении напряжения питания от
2.1 до 6,6 В при среднем токе потребления 7 мА (без входного сигнала), коэффициент усиления микросхемы по напряжению меняется от 18 до 24 дБ [31.11].
Коэффициент нелинейных искажений при выходной мощности до 100 мВт не более 0,015 %, выходное напряжение шумов не превышает 100 мкВ. Входное сопротивление микросхемы 35—50 кОм. Сопротивление нагрузки — не ниже 8 Ом. Диапазон рабочих частот — 20 Гц — 30 кГц, предельный — 10 Гц — 100 кГц. Максимальное напряжение входного сигнала — до 0,25—0,5 В.
Структурная схема микросхемы КР174УН31 приведена на рис. 31.43. Вывод 6 — фильтр блокировки, вывод 7 — фильтр делителя смещения.
Выходная мощность стереофонического УНЧ (рис. 31.44) на микросхеме КР174УН31 на канал при напряжении питания 6,0 В — 0,44 Вт, при 4,5 В — 0,24 Вт, при 3,0 В — 0,1 Вт.
Выходная мощность монофонического УНЧ (рис. 31.45) на микросхеме КР174УН31 на каждый канал при напряжении питания 6,0 В —
1.1 Вт, при 4,5 В — 0,54 Вт, при 3,0 В — 0,2 Вт.
Рис. 31.44. Схема стереофонического УНЧ на микросхеме КР 7 74УНЗ 7 С1=С4=С8=0,15мкФ, С2- 7 00 мкФ, СЗ=10мкФ, С7= 7 000 мкФ, С5-С6-500 мкФ
Рис. 31.45. Схема монофонического УНЧ на микросхеме КР 7 74УНЗ 7 С1=С4-С6=0,75 мкФ, С2=2000 нФ, СЗ=ЮмкФ, С5-Ю00мкФ
Микросхема КР174УН34 производства ОАО «Ангстрем» (рис. 31.46) — двухканальный низкочастотный усилитель мощности с выходной мощностью до 1,3 Вт при напряжении питания 6 В [31.12]. Напряжение питания 2—9 В (предельное — 1,8—15 В). Потребляемый ток в режиме
молчания при напряжении питания 6 В — менее 9 мА. Коэффициент усиления при напряжении питания 6 В и сопротивлении нагрузки 4 Ом — 36—41 дБ. Входное сопротивление — не менее 100 кОм.
Рис. 31.48. Схема мостового монофонического УНЧ на микросхеме КР174УН34
Стереофонический УНЧ (рис. 31.47) на микросхеме КР174УН34 при напряжении питания 2 В (сопротивление нагрузки 32 Ом) обеспечивает выходную мощность 2 мВт на канал при КНЛ 10 %; при 3 В (4 Ом) — 40 мВт·, при 6 В (8 Ом) — 300 мВт; при 6 В (4 Ом) — 450 мВт; при 9 В (8 Ом) — 600 мВт.
Рис. 31.49. Внешний вид и цоколевка микросхемы TDA2030 (К 7 74УН79)
Рис. 31.46. Структурная Рис. 31.47. Схема стереофонического
схема микросхемы КР174УН34 УНЧ на микросхеме КР174УН34
Монофонический УНЧ по мостовой схеме (рис. 31.48) при напряжении питания 2 В (сопротивление нагрузки 4 Ом) обеспечивает выходную мощность свыше 30 мВт при КНЛ 10 %; при 3 В (8 Ом) — 120 мВт; при 3 В (4 Ом) — 200 мВт; при 4,5 В (4 Ом) — 400 мВт; при 6 В (8 Ом) — 900 мВт; при 9 В (16 Ом) — 1400 мВт.
Микросхема TDA2030, выпускаемая фирмами RFT, SGS-Thomson Microelectronics, ST Microelectronics [31.8, 31.13], предназначена для создания недорогих УНЧ с выходной мощностью до 10—12 Вт (в зависимости от напряжения питания и используемого радиатора), рис. 31.49 и рис. 31.50.
Отечественный аналог микросхемы — К174УН19. В микросхеме предусмотрена защита от короткого замыкания нагрузки и перегрева.
Рис. 31.50. Типовая схема использования микросхемы TDA2030 (К174УН19) в качестве УНЧ
Типовые характеристики УНЧ (рис. 31.50) на микросхеме TDA2030: максимальное напряжение питания до 18 В, выходная мощность до 20 Вт. При питании от 14 В выходная мощность снижается до 14 Вт на сопротивлении нагрузки 4 Ом при КНЛ 0,5 %. Полоса усиливаемых частот в зависимости от разновидности микросхемы 30 Гц — 20 кГц (40 Гц — 15 кГц).
Параллельно резистору R6 в целях коррекции амплитудно-частотной характеристики УНЧ можно включить последовательную RC-цепочку 10 пФ, 15 кОм с подбором номиналов элементов, рис. 31.50.
При использовании двуполярного источника питания схема включения микросхемы видоизменяется, рис. 31.51. Корректирующая цепочка C4R4 может отсутствовать.
Ррс. 31.51. Типовая схема включения микросхемы TDA2030 (К174УН19) в качестве УНЧ с питанием от двуполярного источника питания
Рис. 31.52. Схема мостового усилителя мощностью 28 Вт. на микросхемах TDA2030 (К 174УН19) с питанием от двуполярного источника питания
Мостовой УНЧ на микросхемах TDA2030 (К174УН19) с выходной мощностью до 28 Вт питается от двуполярного источника питания напряжением ±14 В, он показан на рис. 31.52 [31.13]. Параллельно резисторам R3 и R7 могут быть включены корректирующие RC-цепочки, см., например, рис. 31.51.
На рис. 31.53 показан вариант применения микросхемы TDA2030
при использовании ее в составе активных колонок для персонального компьютера (показан один из каналов) [31.14].
Коэффициент усиления УНЧ (20 раз) определяется соотношением R5/R6. Конденсаторы С2, С6 и С5 определяют нижнюю границу усиливаемых частот. Цепочка R7C7 повышает стабильность работы УНЧ в области верхних частот.
УНЧ (рис. 31.54) на микросхеме TDA2030A с выходной мощностью до 30 Вт [31.8] работает в диапазоне частот 40 Гц — 15 кГц, обеспечивая КНЛ 0,5 %.
Рис. 31.53. УНЧ на микросхеме TDA2030
Рис. 31.55. Схема мощного звукового генератора
На микросхеме TDA2030, предназначенной для работы в качестве выходного каскада мощного УНЧ, может быть собран не менее мощный генератор звуковых сигналов, схема которого представлена на рис. 31.55 [31.15].
Такой генератор можно использовать для охранной сигнализации, в качестве гудка транспортного средства, электрического звонка, устройства для отпугивания животных и насекомых и т. д.
Частоту звукового сигнала можно плавно варьировать регулировкой потенциометра R5, а грубо — переключением емкости конденсатора С1. Микросхема должна быть установлена на теплоотводящую пластику. При напряжении питания 20 В устройство потребляет ток 400 мА, при 4 В — 25 мА.
Рис. 31.54. Схема УНЧ повышенной мощности с использованием микросхемы TDA2030A
Нели взамен головки ВА1 включить простейший выпрямитель, то на основе генератора можно получить достаточно мощный преобразователь напряжения любой полярности.
Простой УНЧ (рис. 31.56) на микросхеме К157УД1 может быть использован в качестве выходного каскада приемопередающего устройства, линии связи, переговорного устройства, домофона [31.16].
Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.