Схема турбины: 403 — Доступ запрещён – 403 — Доступ запрещён

Содержание

Конструкция паровых турбин — Уралэнергомаш

Общие представления об устройстве паровых турбин

Основные технические требования к паровым турбинам и их характеристики

Паровая турбина представляет собою роторный лопаточный двигатель, в котором энергия давления поступающего из котла пара сначала преобразуется в кинетическую энергию пара, вытекающего с большой скоростью из сопел, а затем, на лопатках ротора,- в механическую энергию вращения вала. Сопла это направляющие аппараты, предназначенные для преобразования внутренней энергии пара в кинетическую энергию упорядоченного движения молекул.

Схема простейшей паровой турбины представлена на рис. 1.

Основной частью турбины является ротор, состоящий из вала 1 с насаженным на нем рабочим колесом 2, на котором укреплены рабочие лопатки 3 изогнутой формы. Перед диском с рабочими лопатками имеется сопло 4, из которого пар поступает на рабочие лопатки турбины.

паровая турбина
1 – вал; 2 – рабочее колесо; 3 – рабочая лопатка; 4 – сопло
Рисунок 3.1– Принцип действия турбины

Сопло и рабочее колесо составляют одну ступень. На рисунке 1.1, таким образом, представлена принципиальная схема одноступенчатой турбины.

Полученный в парогенераторе перегретый пар при температуре 600 С и давлении 30 МПа по паропроводам передаётся в сопла.

Если перед входом в сопло пар имел некоторую начальную скорость и начальное давление (см. рис. 2), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения и уменьшение давления до значения . Скорость входа пара на рабочую лопатку называют абсолютной скоростью. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит, следовательно, давление пара не меняется. Абсолютная скорость движения пара уменьшается с до вследствие вращения турбины со скоростью V. V – это окружная или переносная скорость.

паровая турбина
Рис.2 – Схема активной турбины

Конструктивно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток.

Реактивными турбинами называют такие турбины, у которых расширение пара происходит не только в соплах перед поступлением пара на рабочие лопатки, но и на лопатках самого рабочего колеса. Это достигается тем, что канал, образованный рабочими лопатками выполняется суживающимся.

Изменение параметров пара в реактивной ступени турбины показано на рис. 3. В соплах турбины происходит частичное расширение пара до промежуточного давления .

Дальнейшее расширение пара до давления происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения , а в началах между лопатками уменьшается из-за вращения лопаток до значения .

паровая турбина
Рис.3 – Схема работы реактивной турбины

В настоящее время турбины выполняют многоступенчатыми, причем водной и той же турбине могут быть как активные, так и реактивные ступени.

Устройство паровой турбины

Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется

валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.

паровая турбина
Рис.4 Устройство паровой турбины

Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке Как правило, каждый из роторов размещают на двух опорных подшипниках. Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.

Каждый из роторов помещают в

корпус цилиндра (см., например, поз. 24). При больших давлениях (а в современных турбинах оно может дос­тигать 30 МПа » 300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.

Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях —

опорах Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают
концевыми уплотнениями
(см. поз. 40, 32, 19) специальной конструкции.

Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите. В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.

После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.

При работе турбины пар из котла по одному или нескольким паропроводам (это зависит от мощности турбины) поступает сначала к главной паровой задвижке, затем к стопорному (одному или нескольким) и, наконец, к регулирующим клапанам (чаще всего — 4). От регулирующих клапанов (на рис. 4 не показаны) пар по перепускным трубам 1 (на рис. 4 их четыре: две из них присоединены к крышке 46 внешнего корпуса ЦВД, а две других подводят пар в нижние половины корпуса) подается в паровпускную камеру

33 внутреннего корпуса ЦВД. Из этой полости пар попадает в проточную часть турбины и, расширяясь, движется к выходной камере ЦВД 38. В этой камере в нижней половине корпуса ЦВД имеются два выходных патрубка 37. К ним приварены паропроводы, направляющие пар в котел для промежуточного перегрева.

Вторично перегретый пар по трубопроводам поступает через стопорный клапан (не показан на рис. 4) к регулирующим клапанам 4, а из них — в паровпускную полость ЦСД 26. Далее пар расширяется в проточной части ЦСД и поступает в его выходной патрубок 22, а из него — в две перепускные трубы 6 (иногда их называют ресиверными), которые подают пар в паровпускную камеру ЦНД

9. ЦВД и ЦСД, ЦНД почти всегда выполняют двухпоточными: попав в камеру 9, пар расходится на два одинаковых потока и, пройдя их, поступает в выходные патрубки ЦНД 14. Из них пар направляется вниз в конденсатор. Перед передней опорой 41 располагается блок регулирования и управления турбиной 44. Его механизм управления 43 позволяет пускать, нагружать, разгружать и останавливать турбину.

Уплотнение представлено на рис. 5.

паровая турбина
Рис.5. Лабиринтное уплотнение для валов турбин

В обойме 7, имеющей такую же конструкцию, как и обойма диафрагм выполнена кольцевая расточка

1, в которую вставляются сегменты уплотнений 3 (по три сегмента в каждую половину обоймы). Сегменты имеют тонкие (до 0,3 мм) кольцевые гребни, устанавливаемые по отношению к валу с очень малым зазором (0,5—0,6 мм). Совокупность кольцевых щелей между гребнями 4 и кольцевыми выступами 6 и кольцевых камер между ними называется лабиринтовым уплотнением. Высокое гидравлическое сопротивление, которым оно обладает, обеспечивает малую утечку пара помимо проточной части турбины.

Типичная рабочая лопатка (рис. 6) состоит из трех основных элементов: профильной части 1; хвостовика

2, служащего для крепления лопатки на диске; шипа 6 прямоугольной, круглой или овальной формы, выполняемого на торце профильной части лопатки за одно целое.

паровая турбина
Рис.6.Рабочая лопатка ЦВД и ЦСД

Лопатки изготавливаются из нержавеющей стали, содержащей 13 % хрома, методом штамповки и последующего фрезерования и набираются на диске через два специальных колодца, в которые затем устанавливаются замковые лопатки с хвостовиками специальной формы.

Отдельно прокатывают бандажную ленту 7, в которой пробивают отверстия, соответствующие форме шипов и расстоянию между ними. Лента нарезается на куски со строго рассчитанным числом объединяемых лопаток. Бандажная лента надевается на шипы, которые затем расклепываются. Ряд соседних лопаток (обычно от 5 до 14), объединенных бандажной лентой (бандажом), называется пакетом рабочих лопаток. Главная цель пакетирования — обеспечить вибрационную надежность рабочих лопаток (не допустить их поломки от усталости вследствие колебаний). После расклепки шипов на бандажах рабочих лопаток ротор устанавливают на токарный станок и окончательно протачивают гребни уплотнений.

На рис. 6 показана лишь одна из типичных конструкций, которые отличаются большим разнообразием как типов хвостовиков, так и бандажей. В современных конструкциях бандажи фрезеруют заодно с профильной частью (с шириной бандажа, равной шагу лопаток), иногда соединяют рабочие лопатки в пакете сваркой.

паровая турбина
Рис.7 Ротор двухпоточного ЦНД мощной турбины

На рис. 7 показан двухпоточный ротор ЦНД в процессе обработки на токарном станке. Первые две ступени имеют ленточ­ные бандажи, а последние ступени — две проволочные связи.

Главным элементом проточной части турбины, определяющим весь ее облик, является рабочая лопатка последней ступени. Чем большую длину она имеет и чем на большем диаметре она установлена (иными словами, чем больше площадь для прохода пара последней ступени), тем более экономичнее турбина. Поэтому история совершенствования турбин — это история создания последних ступеней. В начале 50-х годов ЛМЗ была разработана рабочая лопатка длиной 960 мм для последней ступени со средним диаметром 2,4 м, и на ее базе созданы турбины мощностью 300, 500 и 800 МВт. В конце 70-х была создана новая рабочая лопатка длиной 1200 мм для ступени со средним диаметром 3 м. Это позволило создать новую паровую турбину для ТЭС мощностью 1200 МВт и для АЭС мощностью 1000 МВт.

паровая турбина
Рис.8 Опора валопровода

На рис. 8 показана одна из опор валопровода. Основанием 12 нижняя половина корпуса 2 устанавливается на фундаментную раму (на рисунке не показана). В расточку корпуса на колодках 1, 4 и 10 помещается нижняя половина вкладыша 3. Внутренняя поверхность 8 обеих половин вкладыша выполнена цилиндрической или овальной и залита баббитом, — легкоплавким антифрикционным сплавом на основе олова, допускающего вращение ротора на очень низкой частоте вращения даже при отсутствии смазки. Прямо на поверхность вкладыша 8 и на аналогичную поверхность соседнего вкладыша при монтаже турбины укладывается ротор. Сверху его накрывают верхней половиной вкладыша и притягивают к нижней половине шпильками, ввинчиваемыми в отверстия 9. Затем устанавливается крышка корпуса подшипника.

Масло для смазки шеек валов подается насосами из масляного бака, установленного на нижней отметке конденсационного помещения. Размер масляного бака зависит от мощности турбины: чем больше мощность, тем больше цилиндров и, следовательно, роторов и их опор, требующих смазки. Кроме того, с ростом мощности растет диаметр шеек, и эти два обстоятельства требуют большого расхода масла и соответственно масляного бака большой емкости, достигающей 50—60 м3. Для смазки подшипников используется либо специальное (турбинное) минеральное масло, либо синтетические негорючие масла. Последние намного дороже, но зато пожаробезопаснее.

От насосов по трубопроводам масло, пройдя через маслоохладители, поступает к емкостям, располагаемым в крышках подшипника, а из них — к отверстиям 6 и к выборке 7, раздающей масло на всю ширину шейки вала. Масло за счет гидродинамических сил «загоняется» под шейку вала, и таким образом вал «плавает» на масляной пленке, не касаясь баббитовой заливки. Масло, пройдя под шейкой вала, выходит через торцевые зазоры вкладыша и стекает на дно корпуса подшипника, откуда самотеком направляется обратно в масляный бак. Вкладыш опоры показан на рис. 9.

паровая турбина
Рис.9 Опорный вкладыш опоры валопровода

Типы паровых турбин и области их использования

Для понимания места и роли паровых турбин рассмотрим их общую классификацию. Из большого разнообразия используемых паровых турбин, прежде всего можно выделить турбины транспортные и стационарные.

Транспортные паровые турбины чаще всего используются для привода гребных винтов крупных судов.

Стационарные паровые турбины — это турбины, сохраняющие при эксплуатации неизменным свое местоположение. В настоящей книге рассматриваются только стационарные паровые турбины.

В свою очередь стационарные паровые турбины можно классифицировать по ряду признаков.

  1. По назначению различают турбины энергетические, промышленные и вспомогательные.

Энергетические турбины служат для привода электрического генератора, включенного в энергосистему, и отпуска тепла крупным потребителям, например жилым районам, городам и т.д. Их устанавливают на крупных ГРЭС, АЭС и ТЭЦ. Энергетические турбины характеризуются, прежде всего, большой мощностью, а их режим работы — постоянной частотой вращения, определяемой постоянством частоты сети.

Основным производителем энергетических паровых турбин в России является Ленинградский металлический завод (Санкт-Петербург). Он выпускает мощные паровые турбины для ТЭС (мощностью 1200, 800, 500, 300 и 200 МВт), ТЭЦ (мощностью 180, 80 и 50 МВт и менее), АЭС (мощностью 1000 МВт).

Другим крупным производителем энергетических паровых турбин является Турбомоторный завод (ТМЗ, г. Екатеринбург). Он выпускает только теплофикационные турбины (мощностью 250, 185, 140, 100 и 50 МВт и менее).

На ТЭС России установлено достаточно много мощных паровых тур­бин Харьковского турбинного завода (ХТЗ, Украина) (мощностью 150, 300 и 500 МВт). Им же произведены все паровые турбины, установленные на АЭС России мощностью 220, 500 и 1000 МВт.

Таким образом, в настоящее время в России функционирует всего два производителя мощных паровых турбин. Если говорить о зарубежных производителях турбин, то их число также является небольшим. Большинство из них являются транснациональными объединениями. В Европе главными производителями паровых турбин являются компании Siemens (Германия), Acea Brown Bovery (ABB, германско-швейцарское объединение), GEC-Alsthom (англо-французское объединение), Scoda (Чехия). В США производителями мощных энергетических турбин являются компании General Electric и Westinghouse, в Японии — Hitachi, Toshiba, Mitsubisi. Все перечисленные производители выпускают паровые турбины вплоть до мощности 1000 МВт и выше. Технический уровень некоторых из них не только не уступает нашим производителям, но и превосходит их.

Промышленные турбины также служат для производства тепловой и электрической энергии, однако их главной целью является обслуживание промышленного предприятия, например, металлургического, текстильного, химического, сахароваренного и др. Часто генераторы таких турбин работают на маломощную индивидуальную электрическую сеть, а иногда используются для привода агрегатов с переменной частотой вращения, например воздуходувок доменных печей. Мощность промышленных турбин существенно меньше, чем энергетических. Основным производителем промышленных турбин в России является Калужский турбинный завод (КТЗ).

Вспомогательные турбины используются для обеспечения технологического процесса производства электроэнергии — обычно для привода питательных насосов и воздуходувок котлов.

Питательные насосы энергоблоков мощностью вплоть до 200 МВт приводятся электродвигателями, а мощностью выше — с помощью паровых турбин, питаемых паром из отбора главной турбины. Например, на энергоблоках мощностью 800 и 1200 МВт установлено соответственно по два и три питательных турбонасоса мощностью 17 МВт каждый, на энергоблоках мощностью 250 (для ТЭЦ) и 300 МВт — один питательный турбонасос мощностью 12 МВт; на энергоблоках мощностью 1000 МВт для АЭС используется два питательных насоса мощностью 12 МВт.

Котлы энергоблоков мощностью 800 и 1200 МВт оборудованы соответственно двумя и тремя воздуходувками, привод которых осуществляется также паровыми турбинами мощностью по 6 МВт каждая. Основным производителем вспомогательных паровых турбин в России является КТЗ.

  1. По виду энергии, получаемой от паровой турбины, их делят на конденсационные и теплофикационные.

В конденсационных турбинах (типа К) пар из последней ступени отводится в конденсатор, они не имеют регулируемых отборов пара, хотя, как правило, имеют много нерегулируемых отборов пара для регенеративного подогрева питательной воды, а иногда и для внешних тепловых потребителей. Главное назначение конденсационных турбин — обеспечивать производство электроэнергии, поэтому они являются основными агрегатами мощных ТЭС и АЭС. Мощность самых крупных конденсационных турбоагрегатов достигает 1000—1500 МВт.

Теплофикационные турбины имеют один или несколько регулируемых отборов пара, в которых поддерживается заданное давление. Они предназначены для выработки тепловой и электрической энергии, и мощность самой крупной из них составляет 250 МВт. Теплофикационная турбина может выполняться с конденсацией пара и без нее. В первом случае она может иметь отопительные отборы пара (турбины типа Т) для нагрева сетевой воды для обогрева зданий, предприятий и т.д., или производственный отбор пара (турбины типа П) для технологических нужд промышленных предприятий, или тот и другой отборы (турбины типа ПТ и ПР). Во втором случае турбина носит название турбины с противодавлением (турбины типа Р). В ней пар из последней ступени направляется не в конденсатор, а обычно производственному потребителю. Таким образом, главным назначением турбины с противодавлением является производство пара заданного давления (в пределах 0,3—3 МПа). Турбина с противодавлением может также иметь и регулируемый теплофикационный или промышленный отбор пара, и тогда она относится к типу ТР или ПР.

Теплофикационные турбины с отопительным отбором пара (типа Т) спроектированы так, чтобы при максимальной теплофикационной нагрузке ступени, расположенные за зоной отбора, мощности не вырабатывали. В последние годы ряд турбин проектируются так, что даже при максимальной нагрузке последние ступени вырабатывают мощность. Такие турбины относятся к типу ТК.

  1. По используемым начальным параметрам пара паровые турбины можно разделить на турбины докритического и сверхкритического начального давления, перегретого и насыщенного пара, без промежуточного перегрева и с промежуточным перегревом пара.

Как уже известно критическое давление для пара составляет примерно 22 МПа, поэтому все турбины, начальное давление пара перед которыми меньше этого значения, относятся к паровым турбинам докритического начального давления. В России стандартное докритическое давление для паровых турбин выбрано равным 130 ат (12,8 МПа), кроме того, имеется определенный процент турбин на начальное давление 90 ат (8,8 МПа). На докритические параметры выполняются все паровые турбины для АЭС и ТЭЦ (кроме теплофикационной турбины мощностью 250 МВт), а также турбины мощностью менее 300 МВт для ТЭС. Докритическое начальное давление зарубежных паровых турбин обычно составляет 16—17 МПа, а максимальная единичная мощность достигает 600—700 МВт.

Все мощные конденсационные энергоблоки (300, 500, 800, 1200 МВт), а также теплофикационный энергоблок мощностью 250 МВт выполняют на сверхкритические параметры пара (СКД) — 240 ат (23,5 МПа) и 540 °С. Переход от докритических параметров пара к СКД позволяет экономить 3—4 % топлива.

Все турбины ТЭС и ТЭЦ работают перегретым паром, а АЭС — насыщенным (с небольшой степенью влажности).

Все мощные конденсационные турбины на докритические и сверхкритические параметры пара выполняют с промежуточным перегревом. Из теплофикационных турбин только турбина ЛМЗ на докритические параметры мощностью 180 МВт и турбина ТМЗ на СКД мощностью 250 МВт имеют промежуточный перегрев. Устаревшие конденсационные турбины мощностью 100 МВт и менее и многочисленные теплофикационные паровые турбины вплоть до мощности 185 МВт строятся без промперегрева.

  1. По зоне использования турбин в графике электрической нагрузки паровые турбины можно разделить на базовые и полупиковые. Базовые турбины работают постоянно при номинальной нагрузке или близкой к ней. Они проектируются так, чтобы и турбина, и турбоустановка имели максимально возможную экономичность. К этому типу турбин следует, безусловно, отнести атомные и теплофикационные турбины. Полупиковыетурбины создаются для работы с периодическими остановками на конец недели (с ночи пятницы до утра в понедельник) и ежесуточно (на ночь). Полупиковые турбины (и турбоустановки) с учетом их малого числа часов работы в году выполняют более простыми и соответственно более дешевыми (на сниженные параметры пара, с меньшим числом цилиндров). Электроэнергетика России в силу ряда причин всегда страдала от недостатка в энергосистеме полупиковых мощностей. Примерно 25 лет назад ЛМЗ спроектировал полупиковую конденсационную турбину мощностью 500 МВт на параметры 12,8 МПа, 510 °С/510 °С. Головной образец этой турбины предполагалось установить на Лукомльской ГРЭС (б. Белоруссия). Однако до сих пор ни одной специальной полупиковой турбины в России не работает. Вместе с тем в Японии и США работают десятки полупиковых турбин упрощенной конструкции.
  2. По конструктивным особенностям паровые турбины можно классифицировать по числу цилиндров, частоте вращения и числу валопроводов.

По числу цилиндров различают турбины одно- и многоцилиндровые. Количество цилиндров определяется объемным пропуском пара в конце процесса расширения. Чем меньше плотность пара, т.е. меньше его конечное давление, и чем больше мощность турбины, т.е. больше массовый расход, тем больше объемный пропуск и соответственно требуемая площадь для прохода пара через рабочие лопатки последней ступени. Однако если рабочие лопатки делать длиннее, а радиус их вращения больше, то центробежные силы, отрывающие профильную часть лопатки, могут возрасти настолько, что лопатка оторвется. Поэтому с увеличением мощности сначала переходят на двухпоточный ЦНД, а затем увеличивают их число. Конденсационные турбины можно выполнить одноцилиндровыми вплоть до мощности 50—60 МВт, двухцилиндровыми — до 100—150 МВт, трехцилиндровыми — до 300 МВт, четырехцилиндровыми — до 500 МВт, пятицилиндровыми — вплоть до 1300 МВт.

По частоте вращения турбины делятся на быстроходные и тихоходные. Быстроходные турбины имеют частоту вращения 3000 об/мин = 50 об/с. Они приводят электрогенератор, ротор которого имеет два магнитных полюса, и поэтому частота вырабатываемого им тока равна 50 Гц. На эту частоту строят большинство паровых турбин для ТЭС, ТЭЦ и частично для АЭС в нашей стране и почти во всем мире. В Северной Америке и на части территории Японии быстроходные турбины строят на частоту вращения 3600 об/мин = 60 об/с, так как там принятая частота сети равна 60 Гц.

Ранее в говорилось о том, что поскольку из-за низких начальных параметров работоспособность пара в турбинах АЭС мала, а снижение капитальных затрат требует увеличения мощности, т.е. массы пропускаемого пара, то объемный расход на выходе из турбины оказывается столь значительным, что оказывается целесообразным переход на меньшую частоту вращения. Так как число магнитных полюсов в электрогенераторе должно быть целым и четным, то переход на использование четырехполюсного электрогенератора и получения той же частоты сети, что и при двухполюсном электрогенераторе, требует снижения частоты вдвое. Таким образом, тихоходные турбины в нашей стране имеют частоту вращения 1500 об/мин = 25 об/с.

паровая турбина
Рис.10 Тихоходная турбина насыщенного пара мощностью 1160 МВт для американской АЭС

На рис. 10 показана тихоходная атомная турбина фирмы ABB мощностью 1160 МВт на частоту вращения 30 об/с. Гигантские размеры турбины хорошо видны в сравнении с фигурой человека, стоящего у средней опоры ее валопровода. Турбина не имеет ЦСД, и пар из ЦВД направляется в два горизонтальных сепаратора-пароперегревателя (СПП), а из них — раздается на три двухпоточных ЦНД. По такой же схеме на частоту вращения 25 об/с построены энергоблоки мощностью 1000 МВт на Балаковской и Ростовской АЭС.

Для АЭС, построенных для теплых климатических условий, т.е. для высокой температуры охлаждающей воды и соответственно высокого давления в конденсаторе), можно строить и быстроходные атомные турбины (рис. 11). Пар к ЦВД турбины поступает из реакторного отделения по четырем паропроводам 11. Пройдя ЦВД, пар поступает к СПП 10 вертикального типа, а после них с помощью ресивера 3 раздается на три одинаковых двухпоточных ЦНД 4. Под каждым ЦНД установлен свой конденсатор, также хорошо видный на макете.

По числу валопроводов различают турбины одновальные (имеющие один валопровод — соединенные муфтами роторы отдельных цилиндров и генератора) и двухвальные(имеющие два валопровода каждый со своим генератором и связанные только потоком пара). На российских тепловых электростанциях используют только одновальные турбины.В начале 70-х годов на Славянской ГРЭС на Украине построена единственная двухвальная турбина мощностью 800 МВт, да и то потому, что в то время не было электрогенератора мощностью 800 МВт.

паровая турбина
Рис.11 Быстроходная атомная турбина мощностью 1093 МВт для испанской АЭС (“ Трилло”), построенная фирмой Siemens

Для обозначения типов турбин ГОСТ предусматривает специальную маркировку, состоящую из буквенной и числовой частей. Буквенная часть указывает тип турбины, следующее за ней число — номинальную мощность турбины в мегаваттах. Если необходимо указать и максимальную мощность турбины, то ее значение приводят через косую черту. Следующее число указывает номинальное давление пара перед турбиной в МПа: для теплофикационных турбин далее через косую черту указывают давление в отборах или противодавление в МПа. Наконец, последняя цифра, если она имеется, указывает номер модификации турбины, принятый на заводе-изготовителе.

Приведем несколько примеров обозначений турбин.

Турбина К-210-12,8-3 — типа К, номинальной мощностью 210 МВт с начальным абсолютным давлением пара 12,8 МПа (130 кгс/см2), третьей модификации.

Трубина П-6-3,4/0,5 — типа П, номинальной мощностью 6 МВт, с на­чальным абсолютным давлением пара 3,4 МПа и абсолютным давлением отбираемого пара 0,5 МПа.

Турбина Т-110/120-12,8 — типа Т, номинальной мощностью 110 МВт и максимальной мощностью 120 МВт, с начальным абсолютным давлением пара 12,8 МПа.

Турбина ПТ-25/30-8,8/1 — типа ПТ, номинальной мощностью 25 МВт и максимальной мощностью 30 МВт, с начальным абсолютным давлением пара 8,8 МПа (90 ат) и абсолютным давлением отбираемого пара 1 МПа.

Турбина Р-100/105-12,8/1,45 — типа Р, номинальной мощностью 100 МВт максимальной мощностью 105 МВт, с начальным абсолютным давлением пара 12,8 МПа и абсолютным противодавлением 1,45 МПа.

Турбина ПР-12/15-8,8/1,45/0,7 — типа ПР, номинальной мощностью 12 МВт и максимальной мощностью 15 МВт, с начальным абсолютным давлением 8,8 МПа, давлением в отборе 1,45 МПа и противодавлением 0,7 МПа.

Основные технические требования к паровым турбинам и их характеристики

Для того чтобы увидеть, насколько совершенной машиной является паровая турбина, достаточно рассмотреть технические требования, предъявляемые к ней. Они сформулированы в государственных стандартах (ГОСТ). Здесь мы остановимся только на наиболее важных из них.

Прежде всего, к турбине предъявляется ряд требований, которые мож­но охватить одним термином — надежность. Надежность технического объекта — это его свойство выполнять заданные функции в заданном объеме при определенных условиях функционирования. Применительно к паровой турбине надежность — это бесперебойная выработка мощности при предусмотренных затратах топлива и установленной системе эксплуатации, технического обслуживания и ремонтов, а также недопущения ситуаций, опасных для людей и окружающей среды.

Важно подчеркнуть, что понятие надежности включает в себя и понятие экономичности. Бесперебойно работающая турбина, работающая с низкой экономичностью из-за износа или с ограничением мощности из-за внутренних неполадок, не может считаться надежной. Надежность — это комплексное свойство, характеризуемое такими подсвойствами, как безотказность, долговечность, ремонтопригодность, сохраняемость, управляемость, живучесть, безопасность. Не вдаваясь в строгие определения этих подсвойств, отметим главные из них.

Безотказность — это свойство турбины непрерывно сохранять работоспособное состояние в течение некоторой наработки. Средняя наработка на отказ для турбин ТЭС мощностью 500 МВт и более должна быть не менее 6250 ч, а меньшей мощности — не менее 7000 ч, а для турбин АЭС — не менее 6000 ч. Если учесть, что в календарном году 8760 ч и что какое-то время турбина не работает (например, по указанию диспетчера энергосистемы), то это означает, что отказы по вине турбины в среднем должны происходить не чаще 1 раза в год.

Полный установленный срок службы турбины ТЭС должен быть не менее 40 лет, а турбин АЭС — не менее 30 лет. При этом оговаривается два важных обстоятельства. Первое: этот срок службы не относится к быстро­изнашивающимся деталям, например, рабочим лопаткам, уплотнениям, крепежным деталям. Для таких деталей важен средний срок службы до капитального ремонта (межремонтный период). В соответствии с ГОСТ он должен быть не менее 6 лет (кроме того, на ТЭС и АЭС реализуется плановая система текущих и планово-предупредительных ремонтов).

Для турбин ТЭС, а точнее для их деталей, работающих при температуре свыше 450 °С, кроме такого показателя долговечности, как срок службы, вводится другой показатель — ресурс — суммарная наработка турбины от начала эксплуатации до достижения предельного состояния. На этапе проектирования предельное состояние определяется как назначенный ресурс. По определению — это ресурс, при достижении которого эксплуатация турбины должна быть прекращена независимо от ее технического состояния. На самом деле при достижении назначенного ресурса турбина может сохранить значительную дополнительную работоспособность (остаточный ресурс) и, учитывая ее высокую стоимость, срок работы турбины продляют. Учитывая нелогичность применительно к турбине термина «назначенный ресурс», стали употреблять термин «расчетный ресурс». Таким образом, расчетный (назначенный) ресурс — это наработка турбины, которая гарантируется заводом-изготовителем; при ее достижении должен быть рассмотрен вопрос о ее дальнейшей эксплуатации.

ГОСТ не регламентирует расчетного ресурса (он должен быть установлен в технических условиях или техническом задании на ее проектирование в каждом конкретном случае). Долгие годы расчетный ресурс составлял 100 тыс. ч, сейчас — как правило, 200 тыс. ч. Важнейшим требованием к турбине является высокая экономичность. Коэффициент полезного действия турбины оценивается по КПД ее цилиндров.

Коэффициент полезного действия цилиндра характеризуется той долей работоспособности пара, которую удалось преобразовать в механическую энергию. Наивысшую экономичность имеет ЦСД: в хороших турбинах он составляет 90—94 %. Коэффициент полезного действия ЦВД и ЦНД существенно меньше и в среднем составляет 84—86 %. Это уменьшение обусловлено существенно более сложным характером течения пара в решетках очень малой (несколько десятков миллиметров в первых ступенях ЦВД) и очень большой (1 м и более) в последних ступенях ЦНД высотой решеток. Рассчитать это течение и подобрать под него профили лопаток затруднительно даже при современных вычислительных средствах. Кроме того, значительная часть проточной части ЦНД работает влажным паром, капли влаги имеют скорость существенно меньшую, чем пар, и оказывают на вращающиеся рабочие лопатки тормозящее действие.

Кроме приведенных технических требований ГОСТ содержит многочисленные другие требования, в частности, к системе защиты турбины при возникновении аварийных ситуаций, к маневренности (диапазон длительной работы — обычно 30—100 % номинальной мощности; продолжительности пуска и остановки, число возможных пусков и т.д.), к системе регулирования и управления турбиной, к ремонтопригодности и безопасности (пожаробезопасности, уровня вибрации, шума и т.д.), методов контроля параметров рабочих сред (пара, масла, конденсата), транспортирования и хранения.

Источник: Языки программирования — Life-prog

Подробное устройство турбины | Blog-Mycar.ru

Устройство турбины автомобиля выполнено так, чтобы увеличить давление топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.

Внешний вид турбины

Принцип работы и устройство турбокомпрессора

Рассмотрим, как работает турбина в автомобиле. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Схема работы турбины

Устройство турбины автомобиля не сложное, она состоит из:

  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Общее устройство турбины

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.

Система охлаждения и устройство турбонаддува

Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.

Охлаждение маслом

Достоинства:

  • Простая конструкция;
  • Удешевление турбокомпрессора.

Недостатки:

  • Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;
    Высокая требовательность к составу масла;
  • Необходимость часто его менять;
  • Требовательность к контролированию температурного режима.

Турбина с масляным охлаждением

Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.

В результате подшипники изнашиваются, их заклинивает, необходим дорогостоящий ремонт. У такой неполадки имеется несколько причин:

  • Некачественное или не то, которое рекомендовано для двигателя масло;
  • Превышение сроков замены масла;
  • Неисправности смазочной системы двигателя автомобиля.

Комплексное охлаждение маслом и антифризом

Преимуществом этого варианта становится большая эффективность получаемого охлаждения. Существенный недостаток — усложнение конструкции турбонагнетателей, что повышает их стоимость.

Турбина с масляным и водяным охлаждением

Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

Конструктивные особенности

При работе горячей турбины воздух, нагнетаемый компрессором в ее корпусе, сильно сжимается, отчего происходит его нагрев. Это вызывает нежелательные последствия, поскольку при высокой температуре в воздухе меньше кислорода. Значит, эффективность наддува также снижается. Для борьбы с подобным явлением начали, используя рекомендации ученых, устанавливать в турбину интеркулер — вспомогательный охладитель воздуха.

Интеркулер для турбины

Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность — задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

Усовершенствование турбонаддува

Решая проблемы устройства турбин, конструкторами была разработана схема, в которой соединились нагнетатели двух компрессоров. Эта конструкция получила название twin-turbo.

Конструкция турбины твин-турбо

В такой системе используются параллельно пара одинаковых турбин. Их задача — повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

Двигатель ниссан с системой твин-турбо

В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

Последовательное соединение разных турбин получило название Bi-turbo.

Конструкция турбины би-турбо

Конструкция устроена так, что при невысоких оборотах функционирует лишь маленькая турбина, которая обеспечивает «отзывчивость» при плавно изменяемой скорости. Если обороты резко возрастают, включается «крупная» турбина». Это позволяет машине получить значительный прирост производительности, причем в любом диапазоне функционирования двигателя. Подобная система реализована в моделях BMW biturbo, тюнинг которых вызывает восхищение.

Система би-турбо от БМВ

Инновационные разработки

В числе современных разработок, уже радующих автовладельцев, турбина VGT, у которой лопатки крыльчатки изменяют свой угол наклона, направляя ее в сторону, куда направлены выхлопные газы.

Турбина с изменяемым углом наклона лопаток

Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

Также к инновационным разработкам относится система Twin-scroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

Конструкция турбины Твин-скролл

При этом имеется два варианта реализации:

  1. Выхлопные газы проходят одновременно оба контура и система функционирует как twin-turbo.
  2. Второй тип работает наподобие схемы biturbo — имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр — при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

Заключение

Сейчас  выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.

Предназначение турбокомпрессора, как он устроен и принцип его работы

Мощность, развиваемая двигателем внутреннего сгорания, зависит от количества топлива и воздуха, поступающего в двигатель. Мощность двигателя возможно повысить за счет увеличения объема этих составляющих.

Но увеличение подачи топлива бессмысленно, если не увеличивается поступление воздуха, необходимого для его сгорания. Поэтому воздух, поступающий в цилиндры двигателя, приходится сжимать. Система принудительной подачи воздуха может работать, используя энергию отработанных газов или с применением механического привода.

Турбокомпрессор или турбонагнетатель — устройство, предназначенное для нагнетания воздуха в двигатель с помощью энергии выхлопных газов. Основные части турбокомпрессора — турбина и центробежный насос, которые связывает между собой общая жесткая ось. Эти элементы вращаются со скоростью — около 100.000 об/мин, приводя в действие компрессор.

Устройство турбокомпрессора

Устройство турбокомпрессора:
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы).

Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе.

Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца.

Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение.

Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха.

В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.

Принцип работы

В своей работе турбокомпрессор использует энергию отработавших газов. Эта энергия вращает турбинное колесо. Затем это вращение через вал ротора передается компрессорному колесу. Компрессорное колесо нагнетает воздух в систему, предварительно сжав его. Охлажденный в интеркулере воздух подается в цилиндры двигателя.

Принцип работы турбокомпрессора

Хотя у турбокомпрессора нет жесткой связи с валом двигателя, эффективность работы турбонаддува зависит от частоты его вращения. Чем больше число оборотов двигателя, тем сильнее поток отработавших газов. Соответственно увеличивается скорость вращения турбины и количество поступающего в цилиндры воздуха.

При работе системы турбонаддува возникают некоторые негативные моменты.

  1. Задерживается увеличение мощности при резком надавливании на педаль газа («турбояма»).
  2. После выхода из «турбоямы» резко повышается давление наддува («турбоподхват»).

Явление «турбоямы» обусловлено инерционностью системы. Это влечет за собой несоответствие между производительностью турбокомпрессора и требуемой мощностью двигателя. Для решения этой проблемы существуют следующие способы:

  • использование турбины с изменяемой геометрией;
  • применение двух параллельных или последовательных компрессоров;
  • комбинированный наддув.

Турбина с изменяемой геометрией оптимизирует поток отработавших газов, изменяя площадь входного канала. Широко применяется в дизельных двигателях.

Турбина с изменяемой геометрией:
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Параллельно работающие турбокомпрессоры применяют для мощных V-образных двигателей (по одному на ряд цилиндров). Эта схема помогает решить проблему за счет того, что у двух маленьких турбин инерция меньше, чем у одной большой.

Установка 2-х последовательных турбин позволяет достичь максимальной производительности, используя разные компрессоры при разных оборотах двигателя.

При комбинированном наддуве применяется и механический, и турбонаддув. При работе двигателя на низких оборотах работает механический нагнетатель. При увеличении оборотов включается турбокомпрессор, а механический нагнетатель останавливается.

Преимущества и недостатки применения турбонаддува

1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.

2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.

3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.

4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.

5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.

6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.

Как работает турбина — видео:

О недостатках

У турбированных двигателей кроме возникновения явлений «турбояма» и «турбоподхват» есть и другие недостатки.

Обслуживание их дороже в сравнении с «классическими». При эксплуатации приходится применять моторное масло специального назначения — его приходится регулярно менять. Двигатель с турбокомпрессором перед пуском должен несколько минут проработать на холостых оборотах. Также сразу не рекомендуется глушить мотор до остывания турбины.

Загрузка…

устройство, принцип действия, основные элементы

Конструкция данного агрегата описывается еще в учебниках 8 класса по физике. Об устройстве паровой турбины рассказывается в книгах следующим образом. Данный вид турбины — это вид двигателя, в котором пар или же нагретый воздух способен вращать вал двигателя без взаимодействия с поршнем, шатуном или коленчатым валом.

Краткое описание устройства

Кратко устройство паровой турбины можно описать следующим образом. На основной элемент, то есть вал, закрепляется диск, к которому крепятся лопатки. Около данных элементов также располагаются такие части, как трубы-сопла. Через них и происходит подача пара из котла. При прохождении пара сквозь сопло он оказывает определенное давление на лопатки, а также диск всей установки. Именно это воздействие приводит во вращение диск турбины вместе с лопатками.

В настоящее время в таких агрегатах чаще всего используется несколько дисков, которые насаживаются на один вал. При таком устройстве паровой турбины происходит следующее. Энергия пара, проходя через каждую лопатку каждого диска, будет отдавать часть своей энергии этим элементам. Основное применение паровые турбины нашли на атомных, а также тепловых электрических станциях, где они соединяются с валом электрического тока. Скорость вращения вала паровой турбины достигает 3000 оборотов в минуту. Данного значения хватает для приемлемой работы генераторов электрического тока.

устройство паровой турбины

Если говорить о применении данных агрегатов, то стоит упомянуть, что они успешно эксплуатируются на кораблях и суднах. Однако из-за устройства паровой турбины, в частности, по причине того, что необходимо большое количество воды для работы турбины, ее эксплуатация на сухопутных и воздушных средствах передвижения невозможна.

Устройство сопла турбины. На что оно влияет

Одним из важнейших элементов для работы устройства стало сопло, сквозь которое и осуществляется прохождение пара.

В наиболее раннем устройстве паровой турбины, когда еще до конца не были изучены такие вещи, как расширение пара, построить рационально функционирующий агрегат с высоким КПД было проблематично. Причина заключалась в том, что сопло, которое использовалось вначале, имело одинаковый диаметр по всей своей длине. А это влекло за собой то, что пар, проходя через трубу и попадая в пространство с меньшим давлением, чем внутри, терял давление и увеличивал свою скорость, но только до определенного значения. Если говорить о насыщении сухого пара, то его давление на выходе из трубки не может быть меньше, чем 0,58 от начального давления. Данный параметр называют критическим давлением. Основываясь на этом значении, можно получить и предельную скорость движения пара, которую называют также критической скоростью, а ее значение для перегретого пара равно 0,546 от начального давления.

устройство и работа паровой турбины

Таких параметров оказалось мало для нормального функционирования турбины. К тому же при выходе из сопла такой формы пар начинал клубиться из-за расширения в атмосфере. Все эти недостатки удалось устранить, когда устройство паровой турбины, ее сопла, было изменено. В начале отбора труба была узкой, постепенно расширяясь к концу. Основная отличительная особенность, которая стала решающим фактором, — это то, что с такой формой стало возможно привести давление у конца сопла к давлению окружающей среды после трубы. Это решило проблему с клубами пара, которые сильно снижали скорость, а также удалось добиться сверхкритических значений для этого параметра, а также давления.

Устройство паровой турбины и принцип работы

Здесь важно сказать о том, что паровая турбина использует два различных принципа работы, которые зависят от ее устройства.

Первый принцип называют активными турбинами. В этом случае, имеются в виду устройства, у которых расширения пара осуществляется только в неподвижных соплах, а также до поступления его на рабочие лопатки.

Устройство паровой турбины и принцип работы второго типа называют реактивным. К таким агрегатам относят те, у которых расширение пара происходит не только до вступления его на рабочие лопатки, но и во время прохождения между таковыми. Еще такие устройства называют работающими на реакции. Если падения тепла в соплах составляет примерно половину от общего теплопадения, то турбину называют также реактивной.

паровая турбина устройство и принцип работы

Если рассматривать устройство паровой турбины и ее основных элементов, то нужно обратить внимание на следующее. Внутри турбины происходит такой процесс: струя жидкости, которая направляется на лопатку, будет оказывать на нее давление, которое будет зависеть от таких параметров, как расход, скорость при входе, а также при выходе на поверхность, форма поверхности лопатки, угол направления струи по отношению к данной поверхности. Здесь важно отметить, что при такой работе вовсе не нужно делать так, чтобы поток воды бил о лопатку. Напротив, в устройствах паровых агрегатов этого принято избегать, и чаще всего делают так, чтобы струя плавно обтекала лопатку.

Активная работа

Каково устройство паровой турбины, работающей на таком принципе. Здесь за основу взят закон о том, что любое тело, обладающее даже малой скоростью, может иметь высокую кинетическую энергию, если движется с большой скоростью. Однако здесь сразу же надо учитывать, что эта энергия очень быстро пропадает, если скорость тела начнет падать. В таком случае, имеется два варианта развития событий, если струя пара ударится о плоскую поверхность, которая будет перпендикулярна ее движению.

Первый вариант — удар происходит о неподвижную поверхность. В таком случае вся кинетическая энергия, которой обладало тело, частично превратится в тепловую энергию, а остальная часть израсходуется на то, чтобы отбросить частицы жидкости в обратном направлении, а также назад. Естественно, что никакой полезной работы выполнено при этом не будет.

Второй вариант — поверхность может перемещаться. В таком случае некоторая часть энергии уйдет на то, чтобы сдвинуть платформу с места, а остальная все так же будет затрачена впустую.

В устройстве паровой турбины и принципе действия, который называется активным, используется именно второй вариант. Естественно, нужно понимать, что при работе агрегата необходимо добиться того, чтобы расход энергии на бесполезную работу был минимальным. Еще одно важное условие заключается в том, что необходимо направить струю пара таким образом, чтобы она не повреждала лопатки при ударе. Достичь выполнения этого условия можно лишь при определенной форме поверхности.

паровая турбина устройство и принцип действия

Путем испытаний и расчетов было установлено, что наилучшей поверхностью для работы со струями пара является та, которая сможет обеспечить плавный поворот, после которого движение рабочего вещества будет перенаправлено в противоположную сторону от изначальной. Другими словами, необходимо придать лопаткам форму полукруга. В таком случае, сталкиваясь с препятствием, максимальная часть кинетической энергии будет передаваться механическом устройству, заставляя его вращаться. Потери же сведутся к минимуму.

Как работает активная турбина

Устройство и принцип действия паровой турбины активного типа заключается в следующем.

Свежий пар с определенными значениями давления и скорости передается в сопло, где происходит его расширение также до определенного показателя давления. Естественно, что вместе с этим параметром, будет увеличиваться и скорость струи. С увеличенным значением скорости, поток пара доходит до механических частей — лопаток. Воздействуя на эти элементы, струя рабочего вещества заставляет вращаться диск, а также вал, на котором он закреплен.

Далее, при выходе из лопаток, поток пара обладает уже другим значением скорости, которое обязательно будет ниже, чем перед этими элементами. Это происходит из-за того, что часть кинетической энергии преобразовалась в механическую. Здесь также важно отметить, что во время прохождения по лопаткам значение давления меняется. Однако важно то, что на входе и на выходе из этих элементов данный параметр имеет одинаковое значение. Это обусловлено тем, что каналы между лопатками обладают одинаковым сечением по всей своей длине, а также внутри этих деталей не происходит добавочного расширения пара. Для того чтобы выпустить пар, который уже отработал, имеется специальный патрубок.

паровая турбина устройство кратко

Механическое устройство турбины

Устройство и работа паровой турбины с точки зрения механики выглядят так.

Агрегат состоит из трех цилиндров, каждый из которых представляет собой статор, имеющий неподвижный корпус, а также вращающийся ротор. Отдельно расположенные роторы соединяются муфтами. Цепочка, которая собирается из отдельных роторов цилиндров, а также из генератора и возбудителя, называется валопроводом. Длина данного устройства при максимальном значении составляющих компонентов (в настоящее время — это не больше 5 генераторов) — 80 метров.

Далее, устройство и работа паровой турбины выглядят так. Валопровод выполняет вращательное движение в таких элементах, как опорные подшипники скольжения вкладышей. Вращение происходит на тонкой масляной пленке, металлической же части этих вкладышей вал во время вращения не касается. На сегодняшний день все роторы конструкции размещаются на двух опорных подшипниках.

В некоторых случаях между роторами, принадлежащими к ЦВД и ЦСД, имеется лишь один общий опорный подшипник. Весь пар, который расширяется в турбине, заставляет каждый из роторов выполнять вращательное движение. Вся мощность, которая вырабатывается каждым из роторов, складывается на полумуфте в общее значение и там достигает своего максимального показателя.

устройство паровой турбины аэс

Кроме того, каждый элемент находится под воздействием осевого усилия. Эти усилия суммируются, а их максимальное значение, то есть общая осевая нагрузка, передается с гребня на упорные сегменты. Эти детали устанавливаются в корпусе упорного подшипника.

Устройство ротора турбины

Каждый ротор помещается в корпус цилиндра. Показатели давления на сегодняшний день они могут достигать 300 МПа, так что корпус данных устройств выполняется двустенным. Это помогает уменьшить разность давления на каждый из них, что позволяет уменьшать толщину каждой из них. Кроме того, это помогает упростить процесс затяжки фланцевых соединений, а также дает возможность турбине при необходимости быстро изменить показатель своей мощности.

Обязательным является наличие горизонтального разъема, который предназначен для легкого процесса монтажа внутрь корпуса, а также должен обеспечивать быстрый доступ к уже установленному ротору, во время проведения ревизии или ремонта. Когда осуществляется непосредственный монтаж турбины, то все плоскости разъемов нижних корпусов монтируются специальным образом. Чтобы упростить данную операцию, принято считать, что все горизонтальные плоскости соединены в одну общую.

Когда в дальнейшем наступает момент монтажа валоповоротного устройства паровой турбины, то его помещают в уже имеющийся горизонтальный разъем, что обеспечивает его центровку. Это необходимо для того, чтобы избежать ударения ротора о статор во время вращения. Такой дефект может привести к довольно серьезной аварии на объекте. Из-за того, что пар внутри турбины характеризуется очень высокой температурой, а вращение ротора происходит на масляных пленках, температура масла должна быть не более чем 100 градусов по Цельсию. Это значение подходит как по требованиям пожаробезопасности, так и соответствует наличию определенных смазочных свойств у материала. Для того чтобы добиться таких показателей, вкладыши подшипников выносятся за корпус цилиндра. Их размещают в специальных точках — опорах.

каково устройство паровых и газовых турбин

Паровые установки на атомных станциях

Устройство паровой турбины на АЭС можно рассматривать на примере установок насыщенного пара, которые имеются лишь на тех объектах, где используется водяной теплоноситель. Здесь стоит отметить, что начальные характеристики паровых турбин на атомных станциях, характеризуются низкими показателями. Это вынуждает пропускать большее количество рабочего вещества, чтобы добиться нужного результата. Кроме того, из-за этого образуется повышенная влажность, которая быстро нарастает по ступеням турбины. Это привело к тому, что на таких объектах приходится использовать внутритурбинные и внешние влагоулавливающие устройства.

Из-за высокой влажности используемого пара снижается коэффициент полезного действия, а также довольно быстро развивается эрозийный износ проточных частей. Для того чтобы избежать данной проблемы, приходится использовать различные методы укрепления поверхности. К таким способам относятся хромирование, закаливание, электроискровая обработка и т. д. Если на других объектах удается использовать простейшее устройство паровых турбин, то на АЭС нужно не только думать о защите от коррозии, но и об отводе влаги.

Наиболее эффективным способом отвода лишней влаги из турбины стал отбор пара. Отбор вещества осуществляется на регенеративные подогреватели. Тут важно отметить, что если такие отборы установлены после каждой ступени расширения, то необходимость в разработке дополнительных внутритурбинных влагоулавливателей отпадает. Также можно добавить, что допустимые пределы влажности пара основываются на диаметре лопатки, а также на скорости вращения.

Каково устройство паровых и газовых турбин

Наилучшим качеством, которое стало важнейшим преимуществом паровой турбины, является то, что она не требует какого-либо соединения с валом электрического генератора. Также это устройство отлично справлялось с перегрузками, и его легко можно было регулировать по частоте вращения. Коэффициент полезного действия у таких агрегатов также довольно высок, что в сочетании с другими преимуществами и вывело их на передний план, если возникала необходимость соединения с электрическими генераторами. Таким же является и устройство паровой турбины AEG.

Схожими объектами стали и газовые турбины. Если рассматривать эти приспособления с точки зрения конструкции, то они практически ничем не отличаются. Как и паровая турбина, газовая является машиной лопаточного типа. Кроме этого, в обоих агрегатах вращение ротора достигается за счет того, что происходит трансформация кинетической энергии потока рабочего вещества.

Существенное отличие между этими установками заключается как раз в типе рабочего вещества. Естественно, что в паровой турбине таким веществом является водяной пар, а в газовой установке — это газ, который чаще всего получен при сжигании каких-либо продуктов, либо является смесью пара и воздуха. Еще одно отличие заключается в том, что для образования этих рабочих веществ необходимо иметь разное дополнительное оборудование. Таким образом, получается, что сами по себе турбины очень похожи, но установки, образующиеся на объектах вокруг них, довольно сильно отличаются.

Паровая турбина с конденсатом

Конденсационные устройства и паровые турбины Лосев С. М. описывал в своей книге, выпущенной в 1964 году. Издание содержало теорию, конструкцию и эксплуатацию паровых установок, а также конденсационных агрегатов.

Турбинная установка, которая находится в котле, имеет три среды — вода, пар и конденсат. Эти три вещества образуют между собой некий замкнутый цикл. Тут важно отметить, что в такой среде во время преобразования теряется достаточно малое количество пара и жидкости. Чтобы компенсировать небольшие потери, в установку добавляют сырую воду, которая перед этим проходит водоочистительное устройство. В этом агрегате жидкость подвергается воздействию различных химикатов, основное предназначение которых в удалении ненужных примесей из воды.

Принцип работы в таких установках следующий:

  • Пар, который уже отработал и обладает пониженным давлением и температурой, попадает из турбины в конденсатор.
  • При прохождении этого участка пути имеется большое количество трубок, по которым непрерывно качается охлаждающая вода при помощи насоса. Чаще всего эта жидкость берется из рек, озер или прудов.
  • В момент соприкосновения с холодной поверхностью трубки отработавший пар начинает образовывать конденсат, так как его температура все еще выше, чем в трубах.
  • Весь скопившийся конденсат постоянно поступает в конденсатор, откуда он непрерывно откачивается насосом. После этого жидкость передается в деаэратор.
  • Из этого элемента вода снова поступает в паровой котел, где превращается в пар, и процесс начинается сначала.

Кроме основных элементов и простого принципа работы, имеется пара дополнительных агрегатов, таких как турбонаддув и подогреватель.

Турбонаддув – по какому принципу он работает + Видео

Турбонаддув представляет собой вариант наддува, когда в цилиндры двигателя авто воздух направляется под определенным давлением.

1 Турбонаддув в автомобиле – общая информация

На данный момент система турбонаддува признается специалистами высокоэффективной системой ощутимого увеличения мощности двигателя авто, которая не требует повышать объем цилиндров и частоту вращения коленвала. При этом двигатель с турбонаддувом гарантирует:

  • уменьшение токсичности отработавших газов, которое достигается благодаря тому, что горючее сгорает полностью;
  • экономию топлива (если рассчитывать расход горючего на единицу мощности).

Турбонаддув работает и на дизельных, и на бензиновых двигателях, но чаще он используется на первых.

Рекомендуем ознакомиться


На дизеле принцип его работы проявляет все свои достоинства в полной мере за счет следующих факторов:
  • сравнительно малой частоты вращения коленвала;
  • повышенного уровня сжатия двигателя машины.

Что касается бензинового авто, можно сказать, что установка турбонаддува на нем может привести к детонации. Это обусловлено повышенной (около 1000 градусов) температурой отработавших газов и существенным повышением частоты вращения мотора.

2 Устройство турбонаддува

Турбонаддув работает по одному принципу. Конструкции разных устройств отличаются друг от друга, но при этом ряд элементов любого турбонаддува авто являются общими. В автомобиле он работает за счет следующих составных частей:

  • впускной коллектор;
  • дроссельная заслонка;
  • фильтр (воздушный), который располагается сразу за воздухозаборником;
  • интеркулер;
  • турбокомпрессор.


Все указанные компоненты турбонаддува в авто связывает посредством напорных шлангов и соединительных специальных патрубков одна схема. Суть работы (ее принцип) рассматриваемого устройства требует именно такой взаимосвязанности составных частей комплекса под названием турбонаддув авто.

3 Турбокомпрессор – важная часть турбонаддува

Схема работы автомобиля с турбонаддувом обязательно требует наличия турбокомпрессора, который также нередко называют газотурбинным нагнетателем. Для чего нужен? Для того чтобы увеличивать во впускной системе авто давление воздуха. Зачем нам требуется такое давление в автомобиле, думается, объяснять не нужно, так как мы указали в самом начале статьи, что принцип работы турбонаддува основывается именно на повышенном давлении.

Суть работы газотурбинного нагнетателя заключается в применении двух колес (компрессорного и турбинного), которые находятся на валу ротора авто. Зачем они нужны? Компрессорное всасывает воздух, затем сжимает его и направляет в двигатель с турбонаддувом, а вот турбинное предназначено для принятия на себя энергии газов.

4 Принцип работы турбонаддува (карбюраторный и дизельный двигатель)

  • отработавшие газы поступают на турбинное колесо и вращают его за счет своей энергии;
  • компрессорное колесо также получает вращение (через вал ротора от турбинного колеса), сжимает воздух, после чего отправляет его в описываемую нами систему;
  • в интеркулере происходит охлаждение сжатого воздуха, который затем идет в цилиндры.


Как видим, турбонаддув имеет вполне понятный принцип работы, обеспечивает большую эффективность работы двигателя транспортного средства, чего, в сущности, и желают многие автолюбители. К его недостаткам относят лишь два явления:

  • «турбояма»: задержка повышения мощности мотора ТС при нажатии (резком) на газ;
  • «турбоподхват»: повышение давления после указанной выше «турбоямы».

Устройство и принцип работы турбокомпрессора

Мощность, развиваемая двигателем внутреннего сгорания, зависит от количества топлива и воздуха, поступающего в двигатель. Мощность двигателя возможно повысить за счет увеличения объема этих составляющих.

Постоянная гонка инженеров за увеличением мощности ДВС привела к появлению турбокомпрессоров. Данное решение оказалось самым эффективным как на бензиновых, так и на дизельных моторах. Становится вполне очевидным, что итоговая мощность ДВС пропорциональна количеству топливовоздушной рабочей смеси, которая попадает в цилиндры двигателя.

Закономерно, что двигатель с большим объемом способен пропускать больше воздуха и тем самым выдавать больше мощности сравнительно с двигателем меньшего объема. Если перед нами стоит задача добиться от малообъемного ДВС такой же мощности, которую демонстрируют моторы большего объема, тогда необходимо принудительно уместить как можно больше воздуха в цилиндрах такого двигателя.

То есть увеличение подачи топлива бессмысленно, если не увеличивается поступление воздуха, необходимого для его сгорания. Поэтому воздух, поступающий в цилиндры двигателя, приходится сжимать. Система принудительной подачи воздуха может работать, используя энергию отработанных газов или с применением механического привода.

Турбокомпрессор или турбонагнетатель — устройство, предназначенное для нагнетания воздуха в двигатель с помощью энергии выхлопных газов. Основные части турбокомпрессора — турбина и центробежный насос, которые связывает между собой общая жесткая ось. Эти элементы вращаются со скоростью — около 100.000 об/мин, приводя в действие компрессор.

Устройство турбокомпрессора

 

Устройство турбокомпрессора: 1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы).

Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе.

Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца.

Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение.

Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха.

В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.

Принцип работы

 

В своей работе турбокомпрессор использует энергию отработавших газов. Эта энергия вращает турбинное колесо. Затем это вращение через вал ротора передается компрессорному колесу. Компрессорное колесо нагнетает воздух в систему, предварительно сжав его. Охлажденный в интеркулере воздух подается в цилиндры двигателя.

Принцип работы турбокомпрессора

 

Хотя у турбокомпрессора нет жесткой связи с валом двигателя, эффективность работы турбонаддува зависит от частоты его вращения. Чем больше число оборотов двигателя, тем сильнее поток отработавших газов. Соответственно увеличивается скорость вращения турбины и количество поступающего в цилиндры воздуха.

При работе системы турбонаддува возникают некоторые негативные моменты.

• Задерживается увеличение мощности при резком надавливании на педаль газа («турбояма»).

• После выхода из «турбоямы» резко повышается давление наддува («турбоподхват»).

Явление «турбоямы» обусловлено инерционностью системы. Это влечет за собой несоответствие между производительностью турбокомпрессора и требуемой мощностью двигателя. Для решения этой проблемы существуют следующие способы:

• использование турбины с изменяемой геометрией;

• применение двух параллельных или последовательных компрессоров;

• комбинированный наддув.

Турбина с изменяемой геометрией оптимизирует поток отработавших газов, изменяя площадь входного канала. Широко применяется в дизельных двигателях.

Турбина с изменяемой геометрией

 

 

Турбина с изменяемой геометрией: 1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Параллельно работающие турбокомпрессоры применяют для мощных V-образных двигателей (по одному на ряд цилиндров). Эта схема помогает решить проблему за счет того, что у двух маленьких турбин инерция меньше, чем у одной большой.

Установка 2-х последовательных турбин позволяет достичь максимальной производительности, используя разные компрессоры при разных оборотах двигателя.

При комбинированном наддуве применяется и механический, и турбонаддув. При работе двигателя на низких оборотах работает механический нагнетатель. При увеличении оборотов включается турбокомпрессор, а механический нагнетатель останавливается.

Преимущества и недостатки турбонаддува

 

1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.

2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.

3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.

4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.

5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.

6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.

Недостатки турбонаддува

 

У турбированных двигателей кроме возникновения явлений «турбояма» и «турбоподхват» есть и другие недостатки.

Обслуживание их дороже в сравнении с «классическими». При эксплуатации приходится применять моторное масло специального назначения — его приходится регулярно менять. Двигатель с турбокомпрессором перед пуском должен несколько минут проработать на холостых оборотах. Также сразу не рекомендуется глушить мотор до остывания турбины.

Дополнительные элементы системы турбонаддува

Blow-Off

Если говорить о конкретных модификациях мотора, а также о компоновке различных элементов в подкапотном пространстве, турбокомпрессор может иметь ряд дополнительных элементов. Мы уже упоминали такие детали системы, как Wastegate и Blow-Off. Давайте рассмотрим их более подробно.

Клапан Blow-off

 

Блоу-офф представляет собой перепускной клапан. Данное устройство устанавливается в воздушной системе. Местом расположения становится участок между выходом из компрессора и дроссельной заслонкой. Главной задачей блоу-офф клапана становится предотвращение выхода компрессора на характерный режим работы surge.

Под таким режимом стоит понимать момент резкого закрытия дросселя. Если описать происходящее простыми словами, то скорость воздушного потока и сам расход воздуха в системе резко понижаются, но турбина еще определенное время продолжает вращение по инерции. Инерционно турбина вращается с той скоростью, которая уже больше не соответствует новым потребностям мотора и упавшему таким образом расходу воздуха.

Последствия после циклических скачков давления воздуха за компрессором могут быть плачевны. Явным признаком скачков является характерный звук воздуха, который прорывается через компрессор. С течением времени из строя выходят опорные подшипники турбины, так как они испытывают сильные нагрузки в момент указанных скачков давления при сбросе газа и последующей работе турбины в этом переходном режиме.

Блоуофф реагирует на разницу давлений в коллекторе и срабатывает благодаря установленной внутри пружине. Это позволяет выявить момент резкого перекрытия дросселя. Если дроссель резко закрылся, тогда блоу-офф осуществляет стравливание в атмосферу внезапно появившегося в воздушном тракте избытка давления. Это позволяет существенно обезопасить турбокомпрессор и уберечь его от избытка нагрузок и последующего разрушения.

Клапан Wastegate

Клапан Wastegate

 

Данное решение представляет собой механический клапан. Вестгейт установливают на турбинной части или же на самом выпускном коллекторе. Задачей устройства является обеспечение контроля за тем давлением, которое создает турбокомпрессор.

Стоит отметить, что некоторые дизельные силовые агрегаты используют в своей конструкции турбины без вейстгейта. Для моторов, которые работают на бензине, в большинстве случаев наличие такого клапана является обязательным условием.

Главной задачей вейстгейта становится обеспечение возможности беспрепятственного выхода для выхлопных газов из системы в обход турбины. Запуск части отработавших газов в обход позволяет осуществлять контроль за необходимым количеством энергии этих газов. Взаимосвязь очевидна, ведь именно выхлоп вращает через вал колесо компрессора. Данный способ позволяет эффективно управлять давлением наддува, которое создается в компрессоре. Наиболее частым решением становится контроль вейстгейта за давлением наддува, который осуществляется при помощи противодавления встроенной пружины. Такая конструкция позволяет контролировать обходной поток выхлопных газов.

• Вейстгейт может быть как встроенным, так и внешним. Встроенный вейстгейт конструктивно имеет заслонку, которая встроена в турбинный хаузинг. Хаузинг в народе попросту называют «улитка» турбины. Дополнительно wastegate имеет пневматический актуатор и тяги от данного актуатора к дроссельной заслонке.

• Гейт внешнего типа представляет собой клапан, который установлен на выпускной коллектор перед турбиной. Необходимо заметить, что внешний гейт имеет одно неоспоримое преимущество сравнительно со встроенным. Дело в том, что сбрасываемый им обходной поток можно возвращать обратно в выхлопную систему достаточно далеко от выхода из турбины, а на спортивных авто и вовсе осуществить прямой сброс в атмосферу. Это позволяет заметно улучшить прохождение отработавших газов через турбину благодаря тому, что наблюдается отсутствие разнонаправленных потоков. Все это очень важно применительно к ограниченному компактному объему «улитки».

Втулочные и шарикоподшипниковые турбины

 

Турбины втулочного типа были сильно распространены достаточно долгое время. Они имели ряд конструктивных недостатков, которые не позволяли в полной мере наслаждаться преимуществами турбомотора. Появление более эффективных шарикоподшипниковых турбин нового поколения постепенно вытесняет втулочные решения. Для примера можно упомянуть шарикоподшипниковые турбины Garrett, которые являются венцом инженерной мысли и используются на многих гоночных двигателях.

На сегодняшний день шарикоподшипниковые турбины являются оптимальным решением, так как требуют значительно меньшего количества масла сравнительно с втулочными аналогами. Учтите, что установка масляного рестриктора на входе в турбокомпрессор является очень желательной, особенно если давление масла в системе находится на отметке выше 4 атм. Осуществлять слив масла необходимо путем специального подвода в поддон, причем с учетом того, что слив должен быть выше уровня масла.

Всегда помните, что слив масла из турбины происходит самостоятельно и под действием силы гравитации. Знание этого диктует необходимость ориентирования центрального картриджа турбины так, чтобы слив масла был направлен вниз.

 

Тот показатель, который определяет реакцию турбины на нажатие педали газа, демонстрирует сильную зависимость от самой конструкции центрального картриджа турбины. Шарикоподшипниковые решения от Garrett способны на 15% быстрее выйти на наддув сравнительно с втулочными аналогами. Шарикоподшипниковые турбины снижают эффект турбо-ямы и делают использование турбомотора максимально похожим на езду с таким атмосферным двигателем, который имеет большой рабочий объем.

Шарикоподшипниковые турбины имеют еще один положительный момент. Такие турбины требуют заметно меньшего потока масла, которое проходит через картридж и осуществляет смазку подшипников. Решение ощутимо снижает вероятность возникновения утечки масла через сальники. Шарикоподшипниковые турбины не являются излишне требовательными к качеству масла, а также менее подвержены закоксовке после плановой или внезапной остановки двигателя.

 

 

Источник

Еще никто не прокомментировал новость.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*