Резонатор как работает: Устройство резонатора выхлопной системы – 403 — Доступ запрещён

Содержание

Резонатор — Википедия

Материал из Википедии — свободной энциклопедии

Резона́тор — колебательная система, в которой происходит накопление энергии колебаний за счёт резонанса с вынуждающей силой. Обычно резонаторы обладают дискретным набором резонансных частот.

В технике обычно встречаются резонаторы с колебанием электромагнитных или механических величин. Конструкция резонатора сильно зависит от его резонансных частот.

Механические резонаторы можно разделить на две условные группы:

  • Резонатор накопительного действия.
  • Резонатор мгновенного действия.

Резонатор накопительного действия[править | править код]

Отличительной чертой такого резонатора является накопление энергии внешнего воздействия за счет уменьшения частоты собственных колебаний. С математической точки зрения любой резонатор, частота колебаний которого строго больше частоты колебаний возмущающей силы, является накопительным. Классическим примером являются качели. Усиление выходной мощности происходит за счет сложения мощностей нескольких колебаний возмущающей силы.

Резонатор мгновенного действия[править | править код]

Под «мгновенным действием» подразумевается совершение одного периода колебания резонатора за время, не большее периода колебания возмущающей силы. Примером такого резонатора может служить резонатор Гельмгольца. Усиление в таких резонаторах может происходить за счет:

  • смещения по времени мощности резонансной частоты на входе, то есть, плавно меняясь на входе резонатора, мощность может увеличиться на выходе за счет уменьшения длительности сигнала;
  • поглощения энергии других (не резонансных) частот. Этот эффект используется певцами при практике резонансного пения;
  • поглощения теплового движения окружающего пространства.

Резонаторы мгновенного действия могут иметь коэффициент усиления до 45 дБ (10 000 раз).

В генераторах СВЧ[1]-излучений (клистрон, магнетрон) резонаторы представляют собой металлическую конструкцию, используемую для генерации волн определённой длины.

  • Калинин В. А., Лобов Г. Д., Штыков В. В. Радиофизика для инженеров / Под ред. С.И.Баскакова. — М.: Изд-во МЭИ, 1994. — 130 с. — 500 экз.

Что такое резонатор выхлопной системы

Работа двигателя на автотранспортных средствах, если говорить про ДВС, сопряжена с выработкой достаточно сильного шума. Но этот шумовой эффект водитель, его пассажиры, а также люди на улице практически не слышат.

Что такое резонатор выхлопной системы

Так было далеко не всегда. Первые машины, работающие на двигателях внутреннего сгорания, были очень шумными, создавали много дыма, а потому это становилось настоящей проблемой. Но решение через некоторое время придумали.

Каждый современный автомобиль обязательно оснащается глушителем. Уже из названия становится очевидно, что главной функцией глушителей является гашение и подавление шумов и звуков, возникающих от работающего мотора.

Система выхлопа устроена достаточно сложно, несмотря на кажущуюся простоту выполняемых функций. В её состав входит несколько элементов, одним из которых выступает резонатор. Относительно него у автолюбителей возникают вопросы. Их интересует, что это такое, зачем устанавливается и какие задачи выполняет в работе системы выхлопа и всего автомобиля.

Что это такое

Для начала следует разобраться, что такое резонатор в современном автомобиле и в чём задача этой детали выхлопной системы автотранспортного средства.

Резонатор глушителя или просто резонатор является неотъемлемой частью системы, отвечающей за вывод выхлопных газов работающего автомобиля. Учитывая то, как выглядит этот резонатор, многие называют его дополнительным глушителем. Он действительно похож на глушитель, но не является таковым. Это лишь часть системы выхлопа.

Не все до конца понимают, что же такое резонатор в машине с двигателем внутреннего сгорания. Часто его позиционируют как узел для снижения уровня шума работающего мотора. Но по факту это вторичный эффект, который достигается за счёт выполнения основной функции резонатора. Она заключается в обеспечении ровного потока отработанных газов по всей системе выхлопа автотранспортного средства.

Когда мотор работает, вне зависимости от количества совершаемых оборотов двигателя, в коллекторе образуются так называемые прерывистые параметры давления газа. Во многом на их частоту влияет количество цилиндров в ДВС и оборотов, совершаемых коленчатым валом. Резонатор позволяет как раз устранять эти прерывистые параметры или уровни давления.

Зачем используются резонаторы

Теперь более конкретно относительно того, для чего нужны резонаторы в автомобилях. Уже название даёт понять, что этот элемент отвечает за резонирование шума или звуковых потоков, которые образуются в процессе работы мотора.

Если говорить простым языком о том, зачем резонатор в выхлопной системе, то это гаситель звуковых колебаний в момент, когда выхлопные газы выходят из камеры сгорания. Но это далеко не все функциональные возможности компонента. На деле резонаторы выполняют одновременно несколько задач, хотя основной считается именно резонирование, либо гашение звуков. Преимущественно низкочастотных.

Специалисты утверждают, что резонатор в конструкции выхлопной системы служит не только для отвода газа и снижения уровня шума. Ещё один момент, для чего служит устройство, заключается в повышении полезной мощности силовой установки. Не зря спортивные автомобили подвергаются специальным доработкам, где стандартный резонатор меняется на более эффективный вариант. В таких случаях размещение элемента происходит непосредственно за прямотоком.

Прямоточная система выхлопаПрямоточная система выхлопа

Крайне важной функциональной особенностью резонатора является его способность снижать температуру выходящих выхлопных газов. Тем самым заметно продлевается срок службы всей системы и глушителя в частности.

Как дополнение можно отметить факт снижения уровня вредных выбросов за счёт участия резонаторов в работе выхлопной автомобильной системы.

Учитывая функции и назначение этого элемента, возникают вопросы касательно того, можно ли убрать из автомобиля резонатор, что произойдёт и какие последствия возможны. Некоторые считают удаление такого элемента глупостью. Но есть далеко не один такой водитель, который убирал конструкцию.

Для ответа на этот вопрос следует учесть, что будет при эксплуатации автомобиля без резонатора. Произойдёт следующее:

  • значительно усилится звук работы выхлопной системы. Иногда он превышает все допустимые нормы, становится крайне неприятным и шумным. Во многом уровень шумности зависит от мощности двигателя и его оборотов;
  • особенно заметным повышение шумности будет при низкочастотном диапазоне. Именно гашением низких звуков занимается резонатор;
  • повысится температура выходящего выхлопного газа, который проходит через глушитель автомобиля. Это существенно снижает срок его службы. В скором времени глушитель придётся менять;
  • нарушится штатное распределение ударных волн в газовой среде. Параллельно поменяются зоны разряжения. Всё это ведёт к заметным потерям двигателя по мощности;
  • настройки по расходу топлива также нарушатся. Это приведёт к увеличению потребления горючего.

Полностью отказаться от использования резонатора можно только в определённых ситуациях, когда проводится комплексный тюнинг выхлопной системы с установкой дополнительных элементов и специальной настройкой. Если просто вынуть из выхлопа резонатор, и продолжить эксплуатировать автомобиль в таком состоянии, ничего кроме повышенного шума и ускоренного износа со всеми вытекающими последствиями это не даст.

Составляющие конструкции

Как уже ранее отмечалось, внешне резонаторы очень напоминают глушители. Из-за этого их легко перепутать новичку. А более опытные автомобилисты называют резонаторы малыми или дополнительными глушителями.

В действительности конструктивно это довольно сложный элемент, включающий в себя несколько слоёв. Причём каждый из этих слоёв отвечает за выполнение определённой функции.

Если познакомиться с устройством резонаторов автомобиля в разрезе, то действительно можно заметить существенное внешнее сходство со стандартным штатным глушителем транспортного средства.

Стоит внести некоторые уточнения относительно того, как устроен в автомобиле резонатор глушителя:

  • конструкция представлена в виде нескольких камер, которые разделены между собой специальной сеткой;
  • такое строение позволяет постоянно сужать и расширять потоки выходящих газов. Важно отметить, что выход газа происходит резкими рывками. Резонатор выравнивает эти рывки, что позволяет на выходе получить равномерный поток выработанного газового выхлопа;
  • камеры внутри немного смещены, что позволяет менять направление движения выхлопа, тем самым сглаживая неравномерную пульсацию;
  • гашение частоты выхлопа происходит за счёт внутренней перфорации. С её помощью уровень шумности снижается.

Свои задачи автомобильный резонатор выполняет благодаря конструкции, которая предусматривает наличие большого количества закрытых полостей, соединённых друг с другом при помощи трубопровода и множества перфораций, то есть отверстий.

Предусмотренные конструкцией отверстия позволяют вызывать разночастотные колебания, меняющиеся за счёт трения.

Что же касается расположения, то этот элемент выхлопной системы устанавливается непосредственно между приёмным коллектором или нейтрализатором и штатным глушителем.

Но расположение может несколько отличаться. Это зависит от конкретно модели автотранспортного средства и производителя.

Важно понимать, что образующийся в двигателе газ при сгорании топливовоздушной смеси имеет огромную температуру. При этом функция резонатора автомобиля заключается в том, чтобы её снижать, уменьшая тепловую нагрузку на глушитель и идущие после резонатора элементы выхлопной системы.

Теперь что касается того, какая температура на выходе из камеры сгорания и под какими тепловыми нагрузками работает малый глушитель. В зависимости от конкретной автомобильной системы, температура может достигать отметки более 650 градусов Цельсия. После возгорания, отработанный газ идёт на впускной коллектор при экстремально высоких температурных показателях.

Доходя для резонатора глушителя автомобиля, температура снижается не так сильно. Потому крайне важно, чтобы резонатор изготавливался из высококачественных и жаропрочных материалов. При эффективной работе самого резонатора, он способствует падению температуры, благодаря чему нагрузка на глушитель оказывается существенно меньше. Это продлевает срок его службы и сохраняет в целостности всю выхлопную автомобильную систему.

Виды

Резонаторы или дополнительные глушители классифицируют в зависимости от того, на двигателях какого типа они используются.

Потому различаются 2 основных вида устройств.

  1. Предназначенные для установки на двухтактные двигатели. Если транспортное средство оснащается подобным мотором, что в наше время встречается не так часто, то резонатор становится обязательным элементом компоновки выхлопной системы. Если резонатор будет отсутствовать, это моментально приведёт к увеличению количества потребляемого топлива. Изменится работа мотора в худшую сторону, снизится скорость и мощность. Это обусловлено тем, что удаляться будет не только отработанный выхлопной газ, но также и не до конца сгоревшее топливо. Отсюда падение скорости параллельно с увеличением расхода топлива.
  2. Резонаторы, устанавливаемые на четырёхтактные силовые установки. В случае с такими двигателями резонатор может сыграть не на пользу автомобилю, а создать определённые дополнительные проблемы. Демонтаж позволяет увеличивать уровень мощности двигателя примерно на 15%. Опытные автомобилисты считают, что на четырёхтактных моторах резонатор только мешает нормальной работе двигателя. Да, если его убрать, мощность действительно повысится. Но одновременно ухудшится экологичность транспортного средства, выхлоп начнёт загрязнять окружающую среду. Потому на 4-тактных моторах всё равно стоят резонаторы, позволяющие достичь требуемых экологических норм.

Есть ещё одна дополнительная классификация, которая различает резонаторы по их конструктивным особенностям.

На некоторые автомобили устанавливаются стандартные элементы моноблочного типа. Но постепенно практически все переходят на комбинированные устройства.

Второй тип резонаторов состоит из двух основных частей. Это классическая конструкция с трубой и перегородками, а также камера, заполненная специальными материалами, обладающими свойствами шумопоглощения. Зачастую в конструкциях используют материалы на основе базальтового волокна.

Комбинированные устройства являются более эффективными, современными и полезными в работе автомобильных двигателей и выхлопных систем. Потому на большинстве автотранспортных средств встречаются именно такие типы резонаторов.

Малые глушители или резонаторы глушителя разделяют по их размерам. Различают следующие подкатегории:

  • короткие;
  • средние;
  • длинные.

Ещё иногда классифицируют резонаторы в зависимости от их объёма. Это полезный способ классификации, поскольку во многом именно от объёма зависит, насколько эффективным окажется резонатор в конструкции автомобильной выхлопной системы. Если будет наблюдаться дефицит объёма в резонаторе, то в момент резкого нажатия водителем на педаль газа уровень шума окажется крайне высоким. Кому-то этот звук нравится, а потому специально устанавливаются резонаторы. Но из соображений безопасности системы выхлопа, а также из уважения к окружающим людям, лучше устанавливать устройств с достаточным рабочим объёмом.

Резонаторы или малые глушители изготавливаются из различных материалов. Наиболее бюджетные конструкции создают на основе алюминированной стали. Хотя в действительности это самая простая сталь, поверх которой наносится небольшой слой алюминия. Выглядят, как полноценно алюминиевые, но по факту не способны выдерживать значительные нагрузки. Требуют более частой замены. Слой алюминия только временно предотвращает образование коррозии на устройстве.

Резонатор глушителя автомобиляРезонатор глушителя автомобиля

Если автомобилист хочет получить действительно качественный, долговечный и эффективный резонатор, когда стандартный заводской элемент не устраивает или износился, оптимально выбирать конструкции на основе нержавеющей стали с двойным корпусом.

Выхлопная система постоянно подвергается сильным нагрузкам в виде высокой температуры. В результате периодически происходят сбои в нормальной работе всего автомобиля. Чтобы поломка резонатора или иного компонента не стала неожиданностью для автовладельца, настоятельно рекомендуется проводить профилактическую проверку и диагностику работоспособности узла. Заметив первичные признаки неисправностей, можно своевременно принять меры, провести ремонтно-восстановительные работы или просто полностью заменить вышедший из строя резонатор.

Отличия резонатора и пламегасителя

Можно довольно часто встретить рассказы автомобилистов, которые устанавливали в выхлопную систему своего транспортного средства пламегаситель. Но не все знают, что это такое и чем вообще отличаются резонатор от пламегасителя.

Некоторые утверждают, что единственным отличием является название. Другие заявляют о существенной разнице между этими двумя элементами. Следует разобраться в вопросе более детально.

Существует устройство, которое почему-то в России и странах СНГ часто называют пламегасителем. Начнём с того, что элемент не гасит пламя. Отсюда и возникают вопросы относительно странного названия. Но в выхлопную систему конструкция действительно устанавливается.

Причём пламегасители размещают непосредственно за приёмной трубой. По факту эта конструкция выполняет задачи дополнительного резонатора. Но тут стоит внести некоторые поправки.

В России экологические нормы далеко не такие строгие, как в Европе. Из-за этого довольно часто на машинах можно встретить ситуации, как на законное место каталитического нейтрализатора, то есть катализатора, устанавливают пламегаситель. Хотя катализатор позволяет как раз снизить уровень вредных выбросов в нашу с вами атмосферу.

По выполняемой роли в выхлопной системе автотранспортного средства пламегаситель действительно во многом напоминает резонатор. К его основным функциям можно отнести реализацию следующих задач:

  • частично компенсирует импульсы, которые возникают при детонации топливовоздушной смеси внутри камер сгорания;
  • частично компенсирует шумовые или звуковые волны низкочастотного диапазона;
  • упорядочивает перемещение отработанного газа;
  • снижает температуру отработанного газа.

Теперь что касается непосредственно интересующих нас отличий между резонатором и так называемым пламегасителем.

Разница в 2 основных вещах:

  1. Пламегасители обязательно должны изготавливаться из высококачественных материалов. Это обусловлено его установкой непосредственно за приёмной трубой. Потому на гаситель воздействуют существенные температурные нагрузки и колебания. Если материал будет некачественным, элемент быстро выйдет из строя.
  2. Резонатор эффективнее компенсирует звуковые волны, нежели пламегаситель. Ведь прямая обязанность резонатора как раз и заключается в том, чтобы компенсировать пиковые звуковые волны, упорядочивать звук, прежде чем он пойдёт в глушитель.

Учитывая эти факторы, можно сказать, что каждый элемент выполняет возложенные на него функции. Пламегаситель и резонатор вовсе не являются синонимичными устройствами. Это несколько разные элементы выхлопной системы автотранспортного средства. Но сходство между ними действительно есть.

Признаки неисправностей резонатора

Напоследок хочется добавить несколько слов относительно того, как можно определить возникновение неисправностей в работе резонатора.

Любые поломки, связанные с этим элементов, приводят к падению мощности двигателя, повышают уровень шума и способствуют увеличению расхода топлива.

Определить неполадки можно по нескольким характерным признакам. А именно:

  • заметно повысилась громкость в работе выхлопной системы. Каждый автовладелец знает, насколько громко или тихо работает его выхлоп. Если же звук возрастает, глушитель функционирует слишком шумно, то это прямой признак выхода из строя резонатора. Он не справляется со своими задачами, а потому на глушитель выходит сильный шум, который не был предварительно погашен;
  • звук дребезжания металла. Он доносится от места, где располагается узел резонатора. В такой ситуации высока вероятность того, что один из внутренних компонентов резонатора под воздействием температурных нагрузок уже прогорел полностью;
  • падает мощность двигателя. Водитель нажимает на педаль газа, но не получает привычную отдачу. Разгон происходит медленнее, при этом растёт количество потребляемого топлива. Эти признаки характерны в случае снижения пропускной способности малого глушителя, то есть резонатора на автомобиле.

Ремонт выхлопной трубы

Если начал проявляться хотя бы один из перечисленных признаков, либо сразу несколько, требуется проверить состояние резонатора.

В зависимости от результатов проверки, можно обойтись мелким ремонтом, частичной заменой, либо же полной сменой вышедшего из строя резонатора.

Когда резонаторы прогорают, пытаться их запаять и заварить сварочным оборудованием не рекомендуется. Лучше заменить деталь полностью. Дополнительно следует узнать, почему элемент вышел из строя раньше положенного срока.

При грамотной эксплуатации резонаторы служат очень долго и не требуют периодической замены. Но в определённых условиях износ может наступить раньше времени. И тогда оптимальным решением проблемы станет замена.

Устройство резонатора

Резонатор, устройство выхлопной системы автомобиля. Какую именно функцию выполняет и на что именно влияет работа резонатора?

Как устроен резонатор, для чего нужен

Резонатор является частью системы глушителя автомобиля, поэтому есть мнение, что его основная функция – снижение уровня шума работы двигателя. Да, резонатор влияет и на это, но есть другие, не менее важные задачи. Резонатор отвечает за уменьшение сопротивления выхлопных газов при движении по выхлопной системе. Происходит это благодаря внутренней структуре устройства резонатора, при забивке которой автомобиль начинает работать в аварийном режиме.

В результате отмечается снижение мощности работы двигателя, повышается расход топлива, усиливается вибрация кузова, и, конечно же, повышается шум рабочего двигателя. Принятие решения о самостоятельном удалении резонатора и замене его просто частью трубы только усугубляет проблему. Полая труба не сможет справиться со сглаживанием колебаний, образующихся при сгорании топлива, не понизит температуру выбрасываемого газа, все это повлечет скорейший износ более дорогих деталей автомобиля.

Иногда резонатор удаляют и вместо него как раз монтируют трубу, но делать это должен профессиональный мастер после проведения определенных расчетов для каждого автомобиля индивидуально. Ведь кроме повышения шума, нарушается и состав выбрасываемого в атмосферу газа, это может стать причиной отказа при прохождении ТО.

Устройство резонатора и принципы работы

Резонатор представляет собой цилиндрический корпус, внутри которого размешается система перегородок с нанесенной перфорацией. Работа устройства заключается в следующем:

Резонатор в разрезе

Резонатор представляет собой цилиндрический корпус, внутри которого размешается система перегородок с нанесенной перфорацией.

  • Изменение колебания потока выбрасываемых газов. Амплитуда колебаний увеличивается, соответственно их частота уменьшается, это достигается созданием камер разного размера, нанесением перфорации на стенки, образующие препятствия для прохождения выхлопных газов по устройству. Это гасит интенсивность звуковых волн.
  • Камеры, расположенные внутри корпуса резонатора расширяют и сужают поток газов во время прохождения через устройство.
  • Трубки и преграды, расположенные внутри корпуса резонатора гасят пульсации высоких и средних частот, образующиеся в результате сгорания топлива. Достигается это опять же при помощи сложной внутренней структуры устройства.
  • Проникая через отверстия перфорации в трубках, расположенных внутри резонатора, выхлопные газы скапливаются, и в какой-то момент стравливаются.

Некоторые виды резонаторов делятся на внутренние камеры, каждая выполняет свою функцию. Например, последняя камера изготавливается из материала, который обладает звукоизоляционными свойствами, для гашения интенсивности звуковых волн работы системы ДВС.

Внешний корпус устройства чаще всего изготавливается из нержавейки, или, более дешевый вариант – стали с нанесением слоя алюминия, защищающего резонатор от коррозии. Резонаторы, выполненные из нержавеющей стали более устойчивы к коррозии, но из-за высокой стоимости устанавливаются не на все современные автомобили.

Устройство прямоточного резонатора

Прямоточный резонатор является разновидностью резонатора, еще его называют спортивным. Этот вид устройства имеет другую внутреннюю структуру – камеры внутри корпуса резонатора отсутствуют, сопротивления при движении не возникает. Это приводи к тому, что выхлопные газы, проходя через резонатор, не меняют направления, пульсации выхлопа не сглаживаются, звук работы систем автомобиля не гасится.

Прямоточный резонатор не монтируется заводом-изготовителем авто. Как правило, им заменяют «родной» резонатор при тюнинге системы глушителя. Учитывая все аспекты работы резонатора и работу всех устройств, на которые он оказывает влияние, такую замену необходимо производить очень осторожно и только у профессионалов. Некачественная замена, подбор резонатора, не отвечающего требованиям автомобиля, может повлечь за собой ремонт других систем, негативно сказаться на комфорте автомобиля.

Кварцевый резонатор | Описание, принцип работы

Что такое кварц

На самом деле, кварц  – это один из самых распространенных минералов  в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц также состоит из кремния но в связке с кислородом. Его формула SiO2.

Выглядит он примерно вот так:

кварц в природе

Ну прямо сокровище какое-то!

Но сокровище спрятано не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике…

Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы.

пьезоэффект

Существует также и обратный эффект, то есть при подаче напряжения мы можем деформировать эти кристаллы. Невооруженным глазом это практически не заметно. Такой эффект называется пьезоэффектом, а вещества  –  пьезоэлектриками.

ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, прижать такой кристалл и всю жизнь получать из него энергию? Побрейтесь). Кстати, пьезоизлучатель тоже относится к пьезоэлектрикам и из него можно получить ЭДС. Ниже на видео светодиод, подпаянный к пьезоизлучателю. Когда мы давим на пьезоизлучатель, вырабатывается ЭДС, которая и зажигает маленький светодиод:

Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия))).

Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.

Кварцевый резонатор

Резонатор – (от лат. resono –  звучу в ответ, откликаюсь) – это система, которая способна совершать колебания с максимальной амплитудой, то есть резонировать, при воздействии внешней силы определенной частоты и формы. Получается, кварцевый резонатор в электронике, а в народе просто “кварц”, – это радиоэлемент, который способен резонировать, если на него подать переменный ток определенной частоты и формы.

Кварцевые резонаторы выглядят в основном вот так:

кварцевый резонатор

Разобрав кварцевый резонатор, можно увидеть воочию сам кристалл кварца. Давайте вскроем кварц советского производства вот в таком корпусе:

советский кварцевый резонатор

Итак, что мы тут видим? Прозрачный кристалл кварца, размещенный между двумя металлическими пластинками, к которым подпаяны выводы самого кварца.

В маленьких кварцах типа этих

маленький кварцевый резонатор

используются тонкие прямоугольные пластинки кварца. Здесь правило такое: чем больше толщина пластинки, тем ниже рабочая частота кварца. Поэтому, самые высокие частоты, на которые делают кварцы, составляет не более 50 Мегагерц, так как пластинка получается очень тонкая, что создает трудности при ее изготовлении. Да и держать ее как-то надо в корпусе, не поломав. По идее, можно выжать из кварца частоту и до 200 Мегагерц, но работать такой кварц будет на обертоне.

Что такое обертоны

Обертоны, или как еще их называют, моды или гармоники – это кратные частоты, выше основной частоты кварца. С помощью фильтров гасят основную частоту кварца и выделяют обертон. В кварцевом резонаторе в режиме обертонов используют нечетные обертоны. Если основная частота кварца F – это первый обертон, то его рабочие обертоны будут как 3F, 5F, 7F, 9F.  Стоит также отметить, что амплитуда обертона убывает с ростом его частоты, поэтому далее 9 обертона смысла брать уже нет, так как выделять амплитуду маленького сигнала очень трудно.

Пример: возьмем кварц с частотой в 10 Мегагерц. Тогда мы можем возбудить его на обертонах в 30 Мегагерц (третий обертон), в 50 Мегагерц (пятый обертон), в 70 Мегагерц (седьмой обертон) и максимум в 90 Мегагерц (девятый обертон).

Чтобы хоть как-то понять, что такое обертоны, для примера послушайте основную частоту 110 Герц и ее обертоны.

Схема, которая возбуждает кварц на обертонах, сложная и не очень надежная, так как во-первых, надо “давить” главную частоту кварца и выделять обертон, а во-вторых, кварц может возбудиться в режиме случайных колебаний. На практике все-таки делают схемы с умножением главной частоты кварца, что намного проще и надежнее.

Обозначение кварца на схеме

Кварц является диэлектриком. А что будет если тонкий диэлектрик разместить между двумя металлическими пластинами? Получится конденсатор! Конденсатор получается очень маленькой емкости, так что замерить его емкость вряд ли получится. Зато не стали мудрить со схемотехническим обозначением кварца, и на схемах его показывают как прямоугольный кусочек кристалла, заключенный между двумя пластинками конденсатора:

Принцип работы кварца

Очень много мифов ходит по интернету именно  о кварцевом резонаторе. Самый популярный миф гласит так: если подать постоянное напряжение на кварцевый резонатор, он будет выдавать переменное напряжение с частотой, которая на нем указана. Насчет “частоты, указанной на нем”, я, может быть, соглашусь, но насчет постоянного напряжения – увы. Кристалл кварца просто сожмется или разожмется). Некоторые вообще до сих пор думают, что кварц сам по себе выдает переменный ток ) Ага).

Для того, чтобы понять принцип работы кварцевого резонатора, надо рассмотреть его эквивалентную схему:

С – это собственно емкость между обкладками конденсатора. То есть если убрать кристалл кварца, то останутся две пластины и их выводы. Именно они и обладают этой емкостью.

С1 – это динамическая емкость самого кристалла. Динамическая – это значит проявляется при работе кварца. Ее значение несколько фемтоФарад. Фемто – это 10-15 !

L1 – это динамическая индуктивность кристалла. Она может достигать несколько тысяч Генри!

R1 – динамическое сопротивление, при работе кварца может достигать от нескольких Ом и до нескольких КилоОм

Можно заметить, что С1, L1 и R1 образуют последовательный колебательный контур, который обладает своей резонансной частотой.

Принцип работы кварцевого резонатора такой: если к обкладкам кварцевого резонатора подвести переменное напряжение, то  его пластинка начнет колебаться с частотой подведенного напряжения. Если подведенная частота  будет совпадать с собственной резонансной частотой колебания кварца, то наступит резонанс. Напряжение на обкладка кварца резко возрастает. В этом случае кварцевый резонатор ведет себя, как настроенный на определенную частоту колебательный контур с очень высокой добротностью.

Каждый кварц имеет разные частоты последовательного и параллельного резонанса. Если мы видим на кварце вот такую надпись

кварцевый резонатор маркировка

это говорит нам о том, что на частоте последовательного резонанса мы можем возбудить этот кварц на частоте 8 Мегагерц. В основном кварц работает на частоте последовательного резонанса. Здесь также есть еще одно правило: если частота маркируется в целых числах в Килогерцах – это работа на основной гармонике, а если в Мегагерцах через запятую – это обертонная гармоника. Например: РГ-05-18000кГц – резонатор для работы на основной частоте, а РГ-05-27,465МГц – для работы на 3-ем обертоне.

И запомните раз и навсегда:

кварцевый резонатор

 

Также рекомендую к прочтению продолжение статьи, которая называется кварцевый генератор.

Кварцевый резонатор — Википедия

Кварцевый резонатор в кристаллодержателе по ГОСТ 2.736-68[1]

Ква́рцевый резона́тор (жарг. «кварц») — электронный прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы.

Следует отличать кварцевый резонатор от устройств, использующих другие пьезоэлектрические материалы — например, специальную керамику (см. керамический резонатор[en]).

На пластинку, тонкий цилиндр, кольцо или брусок, вырезанные из кристалла кварца с определённой ориентацией относительно кристаллографических осей монокристалла нанесены 2 или более электродов — проводящие металлические полоски, выполненные напылением в вакууме или вжиганием плёнки металла на заданные поверхности кристалла.

Резонатор механически крепится в узлах рабочей моды колебаний, чтобы снизить потери колебательной энергии через крепление кристалла. Для иных мод колебаний узлы собственных колебаний расположены в иных местах кристалла и поэтому иные моды колебаний подавлены. Для рабочей моды колебаний кристалл имеет некоторую собственную резонансную частоту механических колебаний, причем на этой частоте добротность механического резонатора очень высока.

При подаче напряжения на электроды благодаря обратному пьезоэлектрическому эффекту происходит изгиб, сжатие или сдвиг в зависимости от того, каким образом вырезан кристалл относительно кристаллографических осей, конфигурации возбуждающих электродов и расположения точек крепления.

Собственные колебания кристалла в результате пьезоэлектрического эффекта наводят на электродах дополнительную ЭДС и поэтому кварцевый резонатор электрически ведёт себя подобно резонансной цепи, — колебательному контуру, составленному из конденсаторов, индуктивности и резистора, причем добротность этой эквивалентной электрической цепи очень велика и близка к добротности собственных механических колебаний кристалла.

Если частота подаваемого напряжения равна или близка к частоте собственных механических колебаний пластинки, затраты энергии на поддержание колебаний пластинки оказываются намного ниже, нежели при большом отличии частоты. Это тоже соответствует поведению электрического колебательного контура.

Условное обозначение кварцевого резонатора (сверху) и его эквивалентная схема (снизу)

По поведению в электрических цепях кварцевый резонатор можно в первом приближении представить в виде эквивалентной электрической схемы, изображённой на рисунке где:

C0{\displaystyle C_{0}} — собственная ёмкость кристалла, образуемая электродами на кристалле — обкладками конденсатора, где диэлектриком является сам кристалл и параллельно соединённой с этой ёмкостью паразитной ёмкостью кристаллодержателя и электрических выводов;
C1{\displaystyle C_{1}}, L1{\displaystyle L_{1}} — эквивалентные ёмкость и индуктивность механической колебательной системы резонатора;
R1{\displaystyle R_{1}} — эквивалентное сопротивление потерь механической колебательной системы.

Математически электрический импеданс в виде преобразования Лапласа можно по правилам параллельного и последовательного соединения двухполюсников записать:

Z(s)=(1s⋅C1+s⋅L1+R1)‖(1s⋅C0),{\displaystyle Z(s)=\left({{\frac {1}{s\cdot C_{1}}}+s\cdot L_{1}+R_{1}}\right)\left\|\left({\frac {1}{s\cdot C_{0}}}\right)\right.,}
где s=jω{\displaystyle s=j\omega } — комплексная частота преобразования Лапласа, двумя вертикальными чертами обозначено параллельное соединение конденсатора C0{\displaystyle C_{0}} и цепи, состоящей из последовательно соединённых C1{\displaystyle C_{1}}, L1{\displaystyle L_{1}}, R1{\displaystyle R_{1}},

или:

Z(s)=s2+sR1L1+ωs2s⋅C0⋅(s2+sR1L1+ωp2).{\displaystyle Z(s)={\frac {s^{2}+s{\frac {R_{1}}{L_{1}}}+{\omega _{\mathrm {s} }}^{2}}{s\cdot C_{0}\cdot (s^{2}+s{\frac {R_{1}}{L_{1}}}+{\omega _{\mathrm {p} }}^{2})}}.}

В такой эквивалентной схеме наблюдается два вида резонанса — последовательный, который наступает при равенстве реактивных сопротивлений XC1{\displaystyle X_{C_{1}}} и XL1{\displaystyle X_{L_{1}}}, при этом резонансе полное электрическое сопротивление (модуль импеданса) мало и практически равно R1{\displaystyle R_{1}} и параллельный резонанс, при котором равны полные сопротивления XL1{\displaystyle X_{L_{1}}} и полное сопротивление цепи, состоящей их последовательно соединённых пары конденсаторов XC1,C2{\displaystyle X_{C_{1},C_{2}}}, при этом полное сопротивление цепи велико, так как ток при резонансе протекает во внутреннем контуре, состоящем из всех двухполюсников эквивалентной схемы.

Резонансная частота последовательного резонанса ωs{\displaystyle \omega _{\mathrm {s} }}:

ωs=1L1⋅C1.{\displaystyle \omega _{\mathrm {s} }={\frac {1}{\sqrt {L_{1}\cdot C_{1}}}}.}

Резонансная частота параллельного резонанса ωp{\displaystyle \omega _{\mathrm {p} }}:

ωp=C1+C0L1⋅C1⋅C0=ωs1+C1C0.{\displaystyle \omega _{\mathrm {p} }={\sqrt {\frac {C_{1}+C_{0}}{L_{1}\cdot C_{1}\cdot C_{0}}}}=\omega _{s}{\sqrt {1+{\frac {C_{1}}{C_{0}}}}}.}

Измерением импеданса кварцевого резонатора на четырёх различных частотах после решения системы 4 уравнений можно определить параметры всех двухполюсников, входящих в эквивалентную схему. Практически, типичная ёмкость конденсатора C1{\displaystyle C_{1}} составляет десятые и даже сотые доли пФ, индуктивность L1{\displaystyle L_{1}} единицы-десятки Гн, сопротивление R1{\displaystyle R_{1}} — десятки-сотни Ом, паразитная ёмкость C0{\displaystyle C_{0}} — десятки пФ.

Так как волновое сопротивление Rw=L1C1{\displaystyle R_{w}={\sqrt {\frac {L_{1}}{C_{1}}}}} при последовательном и параллельном резонансах очень велико относительно последовательного сопротивления R1{\displaystyle R_{1}}, это обеспечивает очень высокую добротность резонансной цепи, достигающей нескольких миллионов.

Так как практически C0≫C1{\displaystyle C_{0}\gg C_{1}} формулу для частоты параллельного резонанса можно упростить:

ωp=C1+C0L1⋅C1⋅C0=ωs1+C1C0≈ωs(1+C12C0).{\displaystyle \omega _{\mathrm {p} }={\sqrt {\frac {C_{1}+C_{0}}{L_{1}\cdot C_{1}\cdot C_{0}}}}=\omega _{s}{\sqrt {1+{\frac {C_{1}}{C_{0}}}}}\approx \omega _{s}\left(1+{\frac {C_{1}}{2C_{0}}}\right).}

Опять же, так как C0≫C1{\displaystyle C_{0}\gg C_{1}} из формул следует, что частоты последовательного и параллельного резонансов очень близки, например, для типичных C1=0,1{\displaystyle C_{1}=0,1} пФ и C0=10{\displaystyle C_{0}=10} пФ для кварцевого резонатора в несколько МГц частоты резонансов различаются на 0,5 %.

Резонансную частоту последовательного резонанса ωs{\displaystyle \omega _{\mathrm {s} }} невозможно изменить подключением к кварцевому резонатору внешней цепи, так как индуктивность и ёмкость C1{\displaystyle C_{1}}, L1{\displaystyle L_{1}} эквивалентной схемы определяются собственным механическим резонансом кристалла.

Резонансную частоту параллельного резонанса можно снижать в небольших пределах, практически на доли процента, так как C0≫C1{\displaystyle C_{0}\gg C_{1}} и ёмкость C0{\displaystyle C_{0}} входит в формулу для частоты подключением к кварцевому резонатору внешнего конденсатора. Также возможно в малых пределах увеличить резонансную частоту подключением внешней катушки индуктивности, этот способ применяется редко.

Изготовители кварцевых резонаторов при их изготовлении механически юстируют резонансную частоту при некотором подключённом внешнем конденсаторе. Ёмкость конденсатора, обеспечивающего заявленную изготовителем частоту параллельного резонанса обычно указывают в спецификации на конкретный резонатор, без подключения этого внешнего конденсатора резонансная частота будет немного выше.

Кварцевый резонатор в герметичном стеклянном корпусе пальчикового бесцокольного исполнения C_{0} Резонатор на 4 МГц в миниатюрном металлическом герметизированном корпусе HC-49/US C_{0} Металлические корпуса разнообразных размеров

Пьезоэлектрический эффект был впервые открыт братьями Жаком и Пьером Кюри в 1880 году. Поль Ланжевен впервые практически использовал этот эффект в ультразвуковом излучателе и приемнике ультразвука в гидролокатора перед первой мировой войной.

Первый электромеханический резонатор, на основе сегнетовой соли, был изготовлен в 1917 году и запатентован в 1918 году Александром М. Николсоном (Alexander M. Nicholson) из компании Bell Telephone Laboratories, хотя его приоритет оспаривался Уолтером Гайтоном Кэди (Walter Guyton Cady), который изготовил кварцевый резонатор в 1921 году.

Некоторые улучшения в конструкцию кварцевых резонаторов предложены позже Льюисом Эссеном и Джорджем Вашингтоном Пирсом (George Washington Pierce).

Первые стабильные по частоте кварцевые резонаторы были разработаны в 1920—1930-х годах. Начиная с 1926 года, кварцевые резонаторы на радиостанциях стали использоваться в качестве элементов, задающих несущую частоту. В это же время резко возросло количество компаний, начавших выпускать кварцевые резонаторы, например, только до 1939 года в США было выпущено более чем 100 тыс. штук.

Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах и таймерах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном двоичном счётчике, она даёт интервал времени в 1 секунду.

Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.

Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.

По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).

Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.

Преимущества[править | править код]

  • Достижение намного бо́льших значений добротности (104—106) эквивалентного колебательного контура, нежели любым другим способом.
  • Малые размеры устройства (вплоть до долей миллиметра).
  • Высокая температурная стабильность.
  • Большая долговечность.
  • Лучшая технологичность.
  • Построение качественных каскадных фильтров без необходимости их ручной настройки.

Недостатки[править | править код]

  • Чрезвычайно узкий диапазон подстройки частоты внешними элементами. На практике для многодиапазонных систем эта проблема решается построением синтезаторов частот различной степени сложности.
  • Смагин А. Г., Ярославский М. И. Пьезоэлектричество кварца и кварцевые резонаторы. — М.: «Энергия», 1970. — 488 с. — 6000 экз.
  • Альтшуллер Г. Б. Кварцевая стабилизация частоты. — М.: «Связь», 1974. — 272 с. — 5600 экз.
  • Андросова В. Г., Банков В. Н., Дикиджи А. Н. и др. Справочник по кварцевым резонаторам / Под ред. П. Г. Позднякова. — Связь, 1978. — 288 с. — 15 000 экз.
  • Глюкман Л. И. Пьезоэлектрические кварцевые резонаторы. — 3-е изд., перераб. и доп. — М.: Радио и связь, 1981. — 232 с. — 10 000 экз.
  • Зеленка И. Пьезоэлектрические резонаторы на объёмных и поверхностных акустических волнах: Материалы, технология, конструкция, применение: Пер. с чешск. — М.: Мир, 1990. — 584 с. — 4050 экз. — ISBN 5-03-001086-6.
  • Ладик А. И., Сташкевич А. И. Изделия электронной техники. Пьезоэлектрические и электромеханические приборы: Справочник. — М.: Радио и связь, 1993. — 104 с. — 3000 экз. — ISBN 5-256-01145-6, ISBN 5-256-00588-X.

Устройство резонатора выхлопной системы — как правильно сделать машину тише?

Резонатор При работе транспортного средства, любой его механизм издает шум. В одних случаях он более громкий, в других менее слышен, однако, в любом случае, определенный шумовой эффект присутствует всегда. Думаю, владельцы бензиновых автомобилей, с установленным двигателем внутреннего сгорания, лучше меня поймут, ведь именно этот агрегат отличается характерным громким «звучанием». Что бы как-то снизить шумовой эффект, на каждый автомобиль в штатном режиме устанавливают глушитель, который является частью системы выхлопа.

Любая такая система состоит из нескольких комплектующих составляющих и есть одной из главных систем транспортного средства. Она не только влияет на показатели экологичности автомобиля (а в последнее время, этот вопрос становится все актуальнее), но и в значительной степени отвечает за качество функционирования и безопасность машины. Более того, состояние газораспределительного механизма (ГРМ), также, связано и со сроком качественного использования транспортного средства.

Как Вы уже наверное догадались, тема данной статьи напрямую связана с выхлопной системой автомобиля. Однако, мы не будем рассматривать ее устройство или общий принцип работы, а сосредоточим свое внимание лишь на одной, не очень большой детали – резонаторе, который занимается гашением звуковых колебаний после выхода газов из камеры сгорания.

Принцип работы резонатора

Выхлопная система Как мы только что отметили, основной задачей резонатора является гашение колебаний звука, возникающих в результате выхода громких выхлопных газов из камеры сгорания. На громкость работы того или иного двигателя, прямым образом влияют габариты устройства (размер, форма) и конечно же, сама конструкция резонатора. В случае выхода детали из строя, нарушается работа всей системы выхлопа: транспортное средство становиться очень шумным, а в салон проникает запах выхлопных газов.

Их образование, происходит в камере сгорания мотора, а наружу они выводятся при помощи выпускного клапана цилиндра. Покинув цилиндр, выхлопные газы, с большой скоростью начинают передвигаться по впускному коллектору и приемной трубе, при чем, температура газовой смеси доходит до 650оС, а значит, все детали выхлопной системы испытывают серьезную тепловую нагрузку.

Устройство резонатора представлено в виде многослойной конструкции, где каждый уровень выполняет свою, конкретную задачу. Когда потоки воздуха попадают на отражатели (важные составляющие элементы резонатора воздушного фильтра), то их гашение происходит за счет трения о них газовых частиц, которые в полостях резонатора выпуска, проходят двумя потоками. Резонаторы впуска и выпуска выполняют одинаковую работу – проводят газ через всю систему выхлопа.

Выхлопная система Слаженная и стабильная работа всех составляющих частей резонатора автомобиля, непосредственно влияет на долговечность службы двигателя, а учитывая, что любой элемент выхлопной системы постоянно подвергается влиянию отрицательных факторов окружающей среды и высоких температур (касается не только резонатора, но и других деталей), то вполне логичным будет предположить наличие периодических рабочих сбоев. Что бы не доводить до крайностей, необходимо регулярно проводить диагностику состояния резонатора.

Выполняя данное действие, помните: эффективность и предельная работоспособность резонатора выхлопной системы зависит от трех основных факторов: состояния катализатора (элемент системы, снижающий количество вредных веществ в выхлопе ), диаметра труб и чистоты глушителя. Принцип работы резонатора базируется на использовании замкнутых полостей, размещенных возле трубопровода и соединенных с ним при помощи большого количества отверстий. Как правило, в корпусе находится два не равных объема, которые разделены сплошной перегородкой.

Каждое из отверстий, включая и замкнутую полость, выполняет роль резонатора, возбуждающего колебания собственной частоты. Условия распределения резонансной частоты, резко меняются, и как следствие, она гасится за счет трения газовых частиц в отверстии. Такой тип глушителя качественно гасит низкие частоты, даже не создавая для газов существенного сопротивления (сечение не уменьшается). Чаще всего, резонатор применяется в качестве среднего глушителя.

Из чего состоит резонатор

Выхлопная системаРезонатор, как важный конструктивный элемент выхлопной системы, внешне напоминает маленький глушитель, из-за чего его часто называют «вспомогательным глушителем», однако, многие специалисты утверждают, что это не так. Конечно, резонатор существенно снижает рабочую громкость системы выхлопа, но это не является его основной функцией, а выступает только как побочный эффект от реализации задачи обеспечения ровности потока выхлопных газов во всей системе выхлопа автомобиля.

При работе силового агрегата (на любых оборотах), в выходном коллекторе можно заметить прерывистые значения давления отработанных газов, частота которых основывается на оборотах коленчатого вала двигателя и количества его цилиндров. Для более качественной работы всей системы, нужно добиться равномерности этого давления, ведь только в таком случае, выхлопная система будет обладать минимальным сопротивлением отработанных газов и не станет отбирать лошадиные силы двигателя.

Несмотря на мнение некоторых специалистов, многие автолюбители продолжают называть резонатор «средним глушителем» (так как он располагается в средней части системы выхлопа) и нельзя сказать, что они полностью неправы. Данная деталь не только внешне похожа на уменьшенный глушитель, но еще и имеет схожее с ним внутреннее строение. Здесь все просто: что бы выровнять поток выхлопных газов, используются практически те же приемы, что и в глушителях. Давайте рассмотрим их более детально. Во-первых, расширением и сужением потока отработанных газов, занимаются несколько камер резонатора, где происходит эффективное выравнивание больших низкочастотных пульсаций (не прямоточное устройство).

Во-вторых, при изменении направления потока выхлопных газов, камеры, вместе с соединяющими их трубопроводами, располагаются с некоторым смещением, что помогает гасить средние и высокочастотные пульсации.

РезонаторВ-третьих, наличие перфорационных отверстий в трубопроводах и разница в объемах, окружающих трубу, способствуют гашению широкого частотного диапазона потока отработанных газов. Такой способ, наиболее популярен в прямоточных резонаторах (в основном используется на спортивных автомобилях). Еще одним сходством резонатора и глушителя есть то, что сквозь перфорационные отверстия трубопроводов, отработанные газы камеры средней частоты (большего объема) и камеры высокой частоты пульсации (меньшего объема), подаются в закрытые камеры, где скапливаются при высоком давлении выхлопных газов и стравливаются в ходе снижения давления в выхлопной системе.

С конструктивной точки зрения, резонатор – это многоуровневое устройство, в котором каждый уровень имеет свои обязанности и отвечает за выполнение определенных функций. Так, к примеру, резонатор воздушного фильтра, имеет в своем составе отражатели, которые выполняют гашение попадающих на них потоков газообразной среды путем трения соответствующих частиц, проходящих внутри резонатора двумя потоками. Устройства впуска и выпуска, выполняют одинаковую роль и продвигают через систему потоки отработанного газа.

Виды резонаторов

Все существующие резонаторы разделяют на виды, в зависимости от типов двигателей к которым они подходят. Поэтому, различают всего два видовых варианта таких устройств: для двухтактных моторов и для четырехтактных.

Резонатор В ходе многолетней эксплуатации обоих видов, был установлено: работая в паре с четырехтактным двигателем, резонатор является скорее помехой, нежели помощником и в данном случае, его демонтаж ведет к увеличению мощностных характеристик мотора примерно на 15%. Если же забрать резонатор у двухтактного двигателя, то это вызовет совсем противоположный эффект: его отсутствие поспособствует не только газовому удалению, но еще и ликвидирует несгоревшее полностью топливо. В результате таких действий расход топлива существенно увеличится, а скорость, наоборот, снизится.

Кроме того, условно резонаторы можно разделить и с точки зрения длины (или формы) кузова автомобиля. К примеру, к автомобилю ВАЗ 2110, можно подобрать один из трех возможных видов резонатора: короткий (21103), средний (21102) и длинный ( 2110).

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Устройство, принцип работы и ремонт резонатора глушителя

Основную роль по глушению шума, возникающего после сгорания рабочей смеси в моторе, играет резонатор. Габариты этой запчасти зависят непосредственно от количества воспроизводимого шума, имеет значение и его форма.

Устройство, принцип работы и ремонт резонатора глушителя 4

Из-за поломки резонатора хуже работает вся выхлопная система — внутри машины возникает запах выхлопных газов и во время движения появится сильный шум.

Устройство, принцип работы и ремонт резонатора глушителя 5

Как устроен резонатор

Устройство, принцип работы и ремонт резонатора глушителя 6

Сам по себе он состоит из массы слоев, где каждый несет ответственность за осуществление конкретных задач. Едва только горячий отработанный газ попадает в резонатор, где проходит через отражатели. Частицы выработанного газа идут по двум разным потокам. Впускной и выпускной резонаторы проделывают один и тот же объем работ, поскольку пропускают выхлопы через всю систему.

Устройство, принцип работы и ремонт резонатора глушителя 7

В связи с тем, что на резонатор и на выхлопную систему в целом регулярно влияют крайне высокие температуры, то эти детали машины нередко ломаются. Для предотвращения поломки нужно регулярно осматривать выхлопную систему и ухаживать за ней.

Устройство, принцип работы и ремонт резонатора глушителя 8

Следует знать, что работа резонатора зависит от:

• состояния чистоты глушителя;
• качества катализатора;
• размера трубы в диаметре.

Снаружи резонатор напоминает маленький глушитель. Для отличной работы системы, давление обязано равномерно распределяться. Именно благодаря этому выхлопная система оказывает меньшее сопротивление, никак не влияющее на понижение отдачи мотора.

Ремонт резонатора

В зависимости от двигателей бывают и разные виды резонаторов — например, бывают резонаторы под двухтактный двигатель и четырехтактный. Делят их и в зависимости от размеров и наружности.

Как понять, что в резонаторе есть поломка: если он неисправен, то появится шум при работе мотора или же сократится отдача движка.

В основном в резонаторе возникают дырки и появляется ржавчина. Ремонт можно сделать самостоятельно, или же прийти к мастерам.

Итак, для заделки дыр нужно:

• вырезать пластину из жести для закрытия дырки. Следует учесть, что размер «заплатки» сделать нужно больше, чтобы не было встык;
• потом нужно затереть место ремонта наждачной бумагой;
• затем высверливают несколько отверстий для крепления на резонаторе и пластине;
• для фиксации пластины на резонаторе понадобится взять шпаклевку и отвердитель;
• после установки пластины через проделанные отверстия прикручивают саморезы;
• не нужно сразу запускать двигатель — шпаклевке нужно застыть.

Таким образом, удастся заделать дыру в резонаторе и он сможет проработать еще пару лет.

Как заменить резонатор глушителя своими руками

Замену резонатора выполняют обычно в гараже, поскольку нужна яма.

Последовательность действий такова:

• спреем против ржавчины WD-40 обрабатывают поверхность соединения болтов резонатора, затем откручивают соединительные болты.
• Отсоединяют особый хомут крепления резонатора, а после разъединения труб нужно извлечь уплотнитель.
• Разъединяют все крепления с уплотнительными кольцами и полностью снимают резонатор.
• Установка нового резонатора выполняется в обратной последовательности.

Во время монтажа резонатора следует проверить место соединения с глушителем — не должно быть зазоров. В случае их появления при сборке, станет заметно меньше коэффициент полезного действия резонатора и будет громкий звук при функционировании силового агрегата.

  • Camp Jeep: когда в одном месте собираются самые крутые внедорожники

Смотреть все фото новости >>

Поделиться Сообщить об ошибке

Выделите ее и нажмите Ctrl + Enter

как найти car.ru Просмотров: 57868   |   Источник: car.ru   |   Автор: Плотников Д. А.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*