Принцип работы навигатора – С чего сделан GPS навигатор, как он определяет местоположение и может ли навигатор работать без Интернета

Содержание

Характеристики и принцип работы автомобильного навигатора, как работает?

Навигаторы автомобильные характеристикиСовременные разработки существенно облегчают жизнь автомобилистов. Работа одного небольшого прибора поможет сориентироваться на незнакомой местности, проложить оптимальный маршрут движения, рассчитать время в пути и миновать возникающие по дороге пробки. Речь идёт об автомобильном навигаторе. А ведь помимо основных функций в этом устройстве собран целый ряд дополнительных. Его можно использовать в качестве аудио- и видеоплеера, система Bluetooth объединит телефон и навигатор в систему громкой связи. Он оповестит о приближении АЗС, поста ГИБДД, камеры видеонаблюдения или других объектов.

Как работает автомобильный навигатор?

Автомобильный навигатор представляет собой устройство, состоящее из монитора, аккумуляторной батареи и печатной платы, объединяющей процессор, антенну, оперативную память. Принцип работы автомобильных навигаторов основан на обмене радиосигналами между приёмником и космическим спутником.

Основой всех подобных приборов служит система NAVSTAR GPS. Разработанная для нужд Министерства обороны США, впоследствии она была оборудована дополнительной частотой излучения сигнала для использования в гражданских целях. Систему GPS образуют двадцать четыре спутника плюс четыре наземные станции, контролирующие состояние спутников и корректирующие установленные в них часы.

Спутники расположены на своих орбитах таким образом, чтобы любой находящийся на поверхности Земли GPS-приёмник мог одновременно принимать сигналы минимум от четырёх из них. Такое условие необходимо для наиболее точного определения его положения в трёхмерной системе координат.

Непрерывный сигнал со спутников, содержащий информацию о параметрах их орбит, работе бортового оборудования и точном времени, посредством антенны попадает на процессор навигатора, совмещённый с дисководом и DVD с картой местности. Учитывая скорость прохождения сигнала между приёмником и каждым из спутников, процессор рассчитывает расстояние до них, определяет точные координаты автомобиля и переносит их на карту. Так же определяются координаты любой заданной точки для прокладывания к ней подходящего маршрута.

В 2011 году появились автомобильные приборы, работа которых помимо системы GPS опирается ещё и на российскую систему ГЛОНАСС. Точность таких моделей несколько выше.

Основные характеристики автомобильного навигатора

При выборе автомобильного навигатора рекомендуется учитывать следующие характеристики:

  • Объём памяти. Если модель не рассчитана на работу с дополнительной картой памяти, очень важен размер встроенной памяти, так как в неё записываются карты и программа навигации. Размер «оперативки» в различных моделях колеблется от 32 до 512 Мб.
  • Дисплей одна из важнейших характеристик. Качество получаемого изображения зависит от размера монитора и его разрешения. Диагональ современных приборов колеблется в диапазоне от 3,5 до 7 дюймов, наибольшее разрешение достигает 800х480 пикселей. Желательно наличие антибликового покрытия экрана.
  • Частота процессора. От неё зависит быстродействие всей системы. Недостаточная частота (менее 500 МГц) плохо отражается на работе с картами, имеющими повышенную детализацию.
  • Число каналов. Эта характеристика соответствует количеству спутников, с которым автомобильный навигатор может обмениваться информацией одновременно. Чем выше эта цифра, тем точнее показания прибора.
  • Чипсет. Выбор производителя данного компонента влияет на скорость и точность, с которыми работает автомобильный навигатор, его энергопотребление и экономичность.
  • Внешний вид. Сюда можно отнести способ крепления, возможность подключения внешней антенны и удобство подключения шнура питания к гнезду прикуривателя.

Помимо этого, при покупке автомобильного навигатора следует обращать внимание на технические характеристики, навигационную программу, ёмкость аккумулятора, ну и, конечно, его стоимость.

GPS как работает? Принципы работы GPS-навигатора

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

как работает gps навигаторИстория появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

станции gpsБолее двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

карты gpsБлагодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве — она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

gps приемникИсходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

gps трекерТак что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее — использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина — ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

координаты gps
Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

gps как работаетС каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS — как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.

Спутниковая система навигации — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 ноября 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 ноября 2019; проверки требует 1 правка. Спутник «Navstar-GPS».

Спу́тниковая систе́ма навига́ции (англ. Global Navigation Satellite System, GNSS, ГНСС) — система, предназначенная для определения местоположения (географических координат) наземных, водных и воздушных объектов. Спутниковые системы навигации также позволяют получить скорости и направления движения приёмника сигнала. Кроме того, могут использоваться для получения точного времени. Такие системы состоят из космического оборудования и наземного сегмента (систем управления). В настоящее время только две спутниковые системы обеспечивают полное покрытие и бесперебойную работу для всего земного шара — GPS и ГЛОНАСС.

Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приёмник до начала измерений. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел — мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.

Метод измерения расстояния от спутника до антенны приёмника основан на том, что скорость распространения радиоволн предполагается известной (на самом деле этот вопрос крайне сложный, на скорость влияет множество слабопредсказуемых факторов, таких как характеристики ионосферного слоя и пр.). Для осуществления возможности измерения времени распространяемого радиосигнала каждый спутник навигационной системы излучает сигналы точного времени, используя точно синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем, и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Все остальные параметры движения (скорость, курс, пройденное расстояние) вычисляются на основе измерения времени, которое объект затратил на перемещение между двумя или более точками с определёнными координатами.

Основные элементы спутниковой системы навигации:

  • орбитальная группировка спутников, излучающих специальные радиосигналы;
  • наземная система управления и контроля (наземный сегмент), включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах;
  • аппаратура потребителя спутниковых навигационных систем («спутниковые навигаторы»), используемая для определения координат;
  • опционально: наземная система радиомаяков, позволяющая значительно повысить точность определения координат;[1]
  • опционально: информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат[2].

Примечания к списку:

1 Является наземным (неотъемлемым) сегментом для Системы дифференциальной коррекции (ССДК)
2 С середины 2010-х, является неотъемлемой частью ГНСС.

Исторические системы[править | править код]

  • Transit — первая в мире спутниковая навигационная система, США, 1960-е — 1996.
  • Циклон — первая спутниковая система навигации в СССР[1], 1976—2010.
  • Цикада — низкоорбитальная «космическая навигационная система»* (КНС) — гражданский вариант морской спутниковой навигационной системы «Циклон», аналог Transit — 1976—2008 гг.
  • Парус — низкоорбитальная КНС (именно с таким названием была принята на вооружение в 1976 г.) — серия российских (советских) навигационных спутников военного назначения.

Действующие спутниковые системы[править | править код]

  • GPS — принадлежит министерству обороны США. Этот факт, по мнению некоторых государств, является её главным недостатком. Устройства, поддерживающие навигацию по GPS, являются самыми распространёнными в мире. Также известна под более ранним названием NAVSTAR.
  • ГЛОНАСС — принадлежит министерству обороны РФ. Разработка системы официально началась в 1976 г., полное развёртывание системы завершилось в 1995 г. После 1996 года спутниковая группировка сокращалась и к 2002 году пришла в упадок. Была восстановлена к концу 2011 г. В настоящее время на орбите находится 27 спутников, из которых 22 используется по назначению[2]. К 2025 году предполагается глубокая модернизация системы.
  • DORIS — французская навигационная система. Принцип работы системы связан с применением эффекта Допплера. В отличие от других спутниковых навигационных систем основана на системе стационарных наземных передатчиков, приёмники расположены на спутниках. После определения точного положения спутника система может установить точные координаты и высоту маяка на поверхности Земли. Первоначально предназначалась для наблюдения за океанами и дрейфом материков.
  • Beidou — развёртываемая Китаем местная спутниковая система навигации, основанная на геостационарных спутниках. По состоянию на 2015 год система имела 14 работающих спутников: 5 на геостационарных орбитах, 5 — на геосинхронных и 4 — на средних околоземных. Реализация программы началась в 2000 году. Первый спутник вышел на орбиту в 2007 г. В мае 2016 года был запущен 21-й космический аппарат. Предполагается, что к 2020 году, когда количество спутников будет увеличено до 35, система «Бэйдоу» сможет работать как глобальная.
  • Galileo — европейская система, находящаяся на этапе создания спутниковой группировки. По состоянию на ноябрь 2016 года на орбите находится 16 спутников, 9 действующих и 7 тестируемых. Планируется полностью развернуть спутниковую группировку к 2020 году[3].

Действующие региональные спутниковые системы[править | править код]

  • IRNSS — индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в Индии. Первый спутник был запущен в 2008 году. Общее количество спутников системы IRNSS — 7.
  • QZSS — японская квази-зенитная спутниковая система (Quasi-Zenith Satellite System, QZSS) была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. Первый QZSS-спутник был запущен в 2010 г. Предполагается создание группировки из трёх спутников, находящихся на геосинхронных орбитах, а также собственной системы дифференциальной коррекции.

Кроме навигации, координаты, получаемые благодаря спутниковым системам, используются в следующих отраслях:

  • Геодезия: с помощью систем навигации определяются точные координаты точек
  • Навигация: с применением систем навигации осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью систем навигации ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах (например, США) это используется для оперативного определения местонахождения человека, звонящего 911. В России в 2010 году начата реализация аналогичного проекта — Эра-ГЛОНАСС.
  • Тектоника, тектоника плит: с помощью систем навигации ведутся наблюдения движений и колебаний плит
  • Активный отдых: существуют различные игры, где применяются системы навигации, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам

Основные характеристики систем навигационных спутников[править | править код]

параметр, способ GPS NAVSTAR СРНС ГЛОНАСС TEN GALILEO BDS COMPASS
Начало разработки 1973 1976 2001 1983
Первый запуск 22 Февраля 1978 12 Октября 1982 28 Декабря 2005 30 октября 2000
Число НС (резерв) 24 (3) 24 (3) 27 (3) 30 (5)
Число орбитальных плоскостей 6 3 3 3
Число НС в орбитальной плоскости (резерв) 4 8 (1) 9 (1) 9
Тип орбит Круговая Круговая (e=0±0.01) Круговая Круговая
Высота орбиты (расчетная), км 20183 19100 23224 21528
Наклонение орбиты, градусы ~55 (63) 64.8±0.3 56 ~55
Номинальный период обращения по среднему солнечному времени ~11 ч 58 мин 11 ч 15 мин 44 ± 5 с 14 ч 4 мин. и 42 с. 12 ч 53 мин 24 
Характеристики сигнала CDMA FDMA (CDMA планируется) CDMA CDMA
Способ разделения сигналов НС Кодовый Кодово-частотный (кодовый на испытаниях) Кодово-частотный нет данных
число частот 2 + 1 планируется 24 + 12 планируется 5 2 + 1 планируется
Несущие частоты радиосигналов, МГц L1=1575.42

L2=1227.60

L5=1176.45

L1=1602.5625…1615.5 L2=1246.4375…1256.5

L3= 1207,2420…1201,7430 сигнал L5 на частоте 1176,45 МГц (планируется)

E1=1575.42 (L1)

E6=1278.750

E5=L5+L3

E5=1191.795 E5A=1176.46 (L5) E5B=1207.14 E6=12787.75

B1=1575,42 (L1)

B2=1191,79 (E5) B3=1268,52 B1-2=1589,742

B1-2=1589,742 B1=1561,098 B2=1207,14 B3=1268,52

Период повторения дальномерного кода (или его сегмента) 1 мс (С/А-код) 1 мс нет данных нет данных
Тип дальномерного кода Код Голда (С/А-код 1023 зн.) М-последовательность (СТ-код 511 зн.) М-последовательность нет данных
Тактовая частота дальномерного кода, МГц 1.023 (С/А-код) 10.23 (P,Y-код) 0.511 Е1=1.023 E5=10.23 E6=5.115 нет данных
Скорость передачи цифровой информации(соответственно СИ- и D- код) 50 зн/с (50Гц) 50 зн/с (50Гц) 25, 50, 125, 500, 100 Гц 50/100 25/50

500

Длительность суперкадра, мин 12.5 2.5 5 нет данных
Число кадров в суперкадре 25 5 нет данных нет данных
Число строк в кадре 5 15 нет данных нет данных
Система отсчета времени UTC (USNO) UTC (SU) UTC (GST) UTC (BDT)
Система отсчета координат WGS-84 ПЗ-90/ПЗ-90.02/ПЗ-90.11 ETRF-00 CGCS -2000
Тип эфемирид Модифицированные кеплеровы элементы Геоцентрические координаты и их производные Модифицированные кеплеровы элементы нет данных
Сектор излучения от направления на центр земли L1=±21 в 0 L2=±23.5 в 0 ±19 в 0 нет данных нет данных
Сектор Земли ±13.5 в 0 ±14.1 в 0 нет данных нет данных
Система дифференциальной коррекции WAAS СДКМ EGNOS SNAS
Высокоорбитальные Геосинхронный Сегмент нет ведутся НИР ведутся НИР 3 НС
Геостационарный сегмент нет ведутся НИР ведутся НИР 5 НС
Точность 5м (без DGPS) 4.5м – 7.4м (без DGPS) 1м (Открытый Сигнал), 0.01м (Закрытый) 10м (Открытый Сигнал), 0.1м (Закрытый)

Отдельные модели спутниковых приёмников позволяют производить т. н. «дифференциальное измерение» расстояний между двумя точками с большой точностью (сантиметры). Для этого измеряется положение навигатора в двух точках с небольшим промежутком времени. При этом, хотя каждое такое измерение имеет погрешность, равную 10-15 метров без наземной системы корректировки и 10-50 см с такой системой, измеренное расстояние имеет погрешность намного меньшую, так как факторы, мешающие измерению (погрешность орбит спутников, неоднородность атмосферы в данном месте Земли и т. д.) в этом случае взаимно вычитаются.

Кроме того, есть несколько систем, которые посылают потребителю уточняющую информацию («дифференциальную поправку к координатам»), позволяющую повысить точность измерения координат приёмника до 10 сантиметров. Дифференциальная поправка пересылается либо с геостационарных спутников, либо с наземных базовых станций, может быть платной (расшифровка сигнала возможна только одним определённым приёмником после оплаты «подписки на услугу») или бесплатной.

На 2009 год имелись следующие бесплатные системы предоставления поправок: американская система WAAS (GPS), европейская система EGNOS (Galileo), японская система MSAS (QZSS)[4]. Они основаны на нескольких передающих поправки геостационарных спутниках, позволяющих получить высокую точность (до 30 см).

Создание системы коррекции для ГЛОНАСС под названием СДКМ завершено к 2016.

Как работает навигатор

Современный путешественник уже не мыслит себя без навигаторов. Раньше необходимые для навигации вещи представляли собой несколько предметов: компас, карты, и ориентирование все равно не было предельно точным. Сейчас все эти функции умещаются в одном-единственном приборе – навигаторе, о принципах работы которого мы сегодня и поговорим. Итак, как работает навигатор.

Навигатор – это прибор, который показывает ваше местоположение на карте, транслируемой на его экране. Делает он это при помощи спутников, с которыми постоянно находится «на связи». Навигатор – это приемник, и принимает он сигналы со спутников глобальной системы позиционирования (сокращенно по-английски GPS). Эта система состоит из 24 спутников, и была запущена американцами еще в конце прошлого века.

 

Как работает GPS навигатор

Суть работы вашего персонального «ориентировщика» заключается в следующем. Вокруг земной орбиты на высоте около 18 километров постоянно курсируют спутники, на борту которых расположены атомные часы, позволяющие с высочайшей точностью определять время. Траектории и скорость спутников жестко заданы, и постоянно мониторятся единой системой управления. Ваше местоположение вычисляется на основе вашего расстояния до 3-4 определенных спутников в конкретное время. Местоположение этих спутников в любую секунду доподлинно известно, поэтому их данные о расстоянии до вас позволяют точно определить ваше местоположение, а количество спутников в виде 3-4 штук позволяет определить точность вашего местоположения вплоть до 1-2 метров.

Но, разумеется, сам навигатор – не простой прибор, и состоит из довольно большого количества составных частей. Он принимает сигналы со спутников, и за обработку этих сигналов отвечает его внутренняя начинка, которая состоит из материнской платы, процессора, памяти, GPS-модуля, приемщика сигналов спутника, БИОСа, операционной системы, специальной оболочки, собственно навигационной программы и карт, которые закачаны в прибор. Давайте подробнее рассмотрим компоненты.

 

Из чего состоит навигатор

На материнскую плату устанавливается «железо» (процессор, джипиэс-модуль и т.д.). Она является как бы каркасом, сердцевиной и основой всего прибора.

«Материнка» соединяется шлейфом с экраном. Практически все современные экраны навигаторов – сенсорные, т.е. управление прибором идет путем нажатия клавиш на самом экране. Раньше практически все навигаторы имели TFT-экран, сегодня же почти все новинки выпускаются с экраном, сделанным по IPS-технологии. Данная технология уменьшает блики и увеличивает качество передачи картинки.

Разумеется, у навигатора есть свой аккумулятор. И если для автомобильных устройств он не так принципиален, так как идет постоянная подзарядка от автомобиля, то для туристических вариантов он жизненно необходим, так как режим отслеживания спутников очень энергозатратный. В будущих статьях мы разберем, как и какие выбирать туристические навигаторы, обращая внимание в том числе на емкость аккумулятора.

Всё описанное железо упаковывается в корпус, который для туристических навигаторов выполняется в защитном варианте – пыле- и влагонепроницаемом. Автомобильные навигаторы часто имеют обычный пластиковый корпус.

Выше мы разобрали лишь железную начинку наших помощников в ориентировании. Она абсолютно бесполезна, если не будет «мозгов» — программного обеспечения.

На навигаторы устанавливается операционная система, подобная той, что можно встретить на компьютерах и смартфонах. Самой популярной в последнее время становится Андроид, но достойную конкуренцию ему составляет Windows CE. Множество брендов-производителей используют эти операционки, но есть и такие, кто имеет собственные разработки – например, бренд Garmin. О правильном выборе навигатора мы поговорим в следующих статьях.

Теперь перейдем непосредственно к тем вещам, которые делают навигатор навигатором. Прежде всего, это сама навигационная программа – т.е. программа, которая обрабатывает сигналы позиционирования и предоставляет их на экран вашего прибора. Таких программ тоже множество, и даже гораздо больше, чем операционных систем, но самая популярная на сегодняшний день, особенно в России, — Navitel. Эта программа передает на экран прибора ваше местоположение. И остается завершающая часть – карты.

Если бы не было карт, то навигационная программа передавала бы просто ваши координаты на черном экране. Какой в этом смысл? Никакого. Поэтому карты являются важнейшей частью навигации, завершающим слоем, на котором и отображается в понятном вам виде информация о вашем местоположении. Карты привязаны к системе координат. Таким образом, когда навигационная программа показывает координаты вашего положения, то они просто накладываются на карту, которая также связана с системой координат. В итоге у современных приборов навигации точность составляет до одного метра.

 

Какой навигатор работает без интернета

В первую очередь, надо понять тот момент, что навигатор работает исключительно через свой GPS-модуль (либо через глонасс, но об этом мы поговорим чуть позже). Соответственно, ему не нужны ни вышки сотовой связи, ни интернет. Но, разумеется, в этом случае в него должны быть закачаны карты местности, по которой вы будете перемещаться. Это значит, что навигаторы работают абсолютно в любой точке земного шара, вне зависимости от того, как близко «цивилизация».

Существуют и такие типы навигаторов, которые работают только при наличии интернета, но там ориентирование и позиционирование ведется по вышкам сотовой связи либо в смешанном режиме, а карты местности подгружаются из интернета. Но даже такие навигаторы можно «заставить» работать офлайн – просто заранее загрузив карты и воспользовавшись встроенным модулем GPS в этих приборах. Как вы, наверное, поняли, речь идет прежде всего о сотовых телефонах и смартфонах, в которых есть джипиэс-модули и в которые можно установить навигационные программы. О выборе навигатора мы поговорим в следующих статьях этого блока.

 

GPS и Глонасс

Теперь давайте разберем еще один момент. До последнего времени слова «навигатор» и «gps-навигатор» значили одно и то же. Но ведь это не синонимы. GPS – это конкретная система позиционирования, разработанная американцами в прошлом веке. Собственно, именно так она и переводится. Но сегодня у GPS есть серьезнейший конкурент, и он отечественного производства – система Глонасс. Позиционирование и навигация осуществляются по тому же принципу, что и GPS, но уже – через наши спутники и наше оборудование. В каких-то вопросах Глонасс еще не достиг уровня GPS, но в целом является уже полноценным конкурентом. В России идет активное развитие нашего детища, и многие выпускаемые навигационные приборы имеют встроенный модуль Глонасса.

 

Как работает навигатор в различных  условиях

Это очень важный вопрос, потому что навигатор непосредственно взаимодействует с сигналами спутников, и его работа чувствительно нарушается, когда нарушается этот контакт. Например, вы вряд ли успешно определите свое местоположение, находясь внутри большого помещения вдали от окон, и уж точно не сможете сделать этого в тоннеле или где-нибудь под землей. Нужно иметь это в виду при планировании собственных перемещений.

Для качественного определения координат навигатор должен соединиться хотя бы с 4 спутниками. Если небо закрыто тучами или мешают какие-то физические препятствия, то прибор может неточно определить ваше местоположение, а то и вовсе отказаться работать, требуя больше спутников.

Вот мы и разобрали основные принципы работы навигатора. Это достаточно сложный прибор, который сильно упрощает жизнь путешественнику и любому человеку, чья деятельность связана с перемещением по поверхности земли. В следующих статьях нашего блока читайте о том, какие выбрать навигаторы для разных условий, чем руководствоваться, и другую интересную информацию по теме навигации.

Читайте также

Система GPS. Взгляд изнутри и снаружи

Немного истории.

Как нередко бывает с высокотехнологичными проектами, инициаторами разработки и реализации системы GPS (Global Positioning System — система глобального позиционирования) стали военные. Проект спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван Navstar (Navigation system with timing and ranging — навигационная система определения времени и дальности), тогда как аббревиатура GPS появилась позднее, когда система стала использоваться не только в оборонных, но и в гражданских целях.

Первые шаги по развертыванию навигационной сети были предприняты в середине семидесятых, коммерческая же эксплуатация системы в сегодняшнем виде началась с 1995 года. В настоящий момент в работе находятся 28 спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы достаточно 24 спутников).

Несколько забегая вперед, скажу, что поистине ключевым моментом в истории GPS стало решение президента США об отмене с 1 мая 2000 года режима так называемого селективного доступа (SA — selective availability) — погрешности, искусственно вносимой в спутниковые сигналы для неточной работы гражданских GPS-приемников. С этого момента любительский терминал может определять координаты с точностью в несколько метров (ранее погрешность составляла десятки метров)! На рис.1 представлены ошибки в навигации до и после отключения режима селективного доступа (данные U.S. Space Command ).Рис1.

Попробуем разобраться в общих чертах, как устроена система глобального позиционирования, а потом коснемся ряда пользовательских аспектов. Рассмотрение же начнем с принципа определения дальности, лежащего в основе работы космической навигационной системы.

Алгоритм измерения расстояния от точки наблюдения до спутника.

Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить, просто умножив время на скорость света.

Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот — L1=1575.42МГц и L2=1227.60МГц. Мощность передатчика составляет 50 и 8 Ватт соответственно. Навигационный сигнал представляет собой фазовоманипулированный псевдослучайный код PRN (Pseudo Random Number code). PRN бывает двух типов: первый, C/A-код (Coarse Acquisition code — грубый код) используется в гражданских приемниках, второй Р-код (Precision code — точный код), используется в военных целях, а также, иногда, для решения задач геодезии и картографии. Частота L1 модулируется как С/А, так и Р-кодом, частота L2 существует только для передачи Р-кода. Кроме описанных, существует еще и Y-код, представляющий собой зашифрованный Р-код (в военное время система шифровки может меняться).

Период повторения кода довольно велик (например, для P-кода он равен 267 дням). Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Одной из основных технических сложностей описанного выше метода является синхронизация часов на спутнике и в приемнике. Даже мизерная по обычным меркам погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы. Понятно, что устанавливать подобную штуку в каждый приемник невозможно. Поэтому для коррекции ошибок в определении координат из-за погрешностей встроенных в приемник часов используется некоторая избыточность в данных, необходимых для однозначной привязки к местности (подробней об этом чуть позже).

Кроме самих навигационных сигналов, спутник непрерывно передает разного рода служебную информацию. Приемник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере (так как скорость света меняется при прохождении разных слоев атмосферы), а также сведения о работоспособности спутника (так называемых «альманах», содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Общие принципы определения координат с помощью GPS.

Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется трилатерацией. Рис2.

Если известно расстояние А до одного спутника, то координаты приемника определить нельзя (он может находится в любой точке сферы радиусом А, описанной вокруг спутника). Пусть известна удаленность В приемника от второго спутника. В этом случае определение координат также не представляется возможным — объект находится где-то на окружности (она показана синим цветом на рис.2), которая является пересечением двух сфер. Расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены двумя жирными синими точками на рис.2). Этого уже достаточно для однозначного определения координат — дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близи от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной навигации достаточно знать расстояния от приемника до трех спутников.

Однако в жизни все не так просто. Приведенные выше рассуждения были сделаны для случая, когда расстояния от точки наблюдения до спутников известны с абсолютной точностью. Разумеется, как бы ни изощрялись инженеры, некоторая погрешность всегда имеет место (хотя бы по указанной в предыдущем разделе неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и т.п.). Поэтому для определения трехмерных координат приемника привлекаются не три, а минимум четыре спутника.

Получив сигнал от четырех (или больше) спутников, приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.

Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от приемника до спутников, но и с величиной погрешности задания местоположения самих спутников. Для контроля орбит и координат спутников существуют четыре наземных станции слежения, системы связи и центр управления, подконтрольные Министерству Обороны США. Станции слежения постоянно ведут наблюдения за всеми спутниками системы и передают данные об их орбитах в центр управления, где вычисляются уточнённые элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в альманах и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим приемникам.

Кроме перечисленных, существует еще масса специальных систем, увеличивающих точность навигации, — например, особые схемы обработки сигнала снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным, например, от зданий). Мы не будем углубляться в особенности функционирования этих устройств, чтобы излишне не осложнять текст.

После отмены описанного выше режима селективного доступа гражданские приемники «привязываются к местности» с погрешностью 3-5 метров (высота определяется с точностью около 10 метров). Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников (большинство современных аппаратов имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников).

Качественно уменьшить ошибку (до нескольких сантиметров) в измерении координат позволяет режим так называемой дифференциальной коррекции (DGPS — Differential GPS). Дифференциальный режим состоит в использовании двух приемников — один неподвижно находится в точке с известными координатами и называется «базовым», а второй, как и раньше, является мобильным. Данные, полученные базовым приемником, используются для коррекции информации, собранной передвижным аппаратом. Коррекция может осуществляться как в режиме реального времени, так и при «оффлайновой» обработке данных, например, на компьютере.

Обычно в качестве базового используется профессиональный приемник, принадлежащий какой-либо компании, специализирующейся на оказании услуг навигации или занимающейся геодезией. Например, в феврале 1998 года недалеко от Санкт-Петербурга компания «НавГеоКом» установила первую в России наземную станцию дифференциального GPS. Мощность передатчика станции — 100 Ватт (частота 298,5 кГц), что позволяет пользоваться DGPS при удалении от станции на расстояния до 300 км по морю и до 150 км по суше. Кроме наземных базовых приемников, для дифференциальной коррекции GPS-данных можно использовать спутниковую систему дифференциального сервиса компании OmniStar. Данные для коррекции передаются с нескольких геостационарных спутников компании.

Следует заметить, что основными заказчиками дифференциальной коррекции являются геодезические и топографические службы — для частного пользователя DGPS не представляет интереса из-за высокой стоимости (пакет услуг OmniStar на территории Европы стоит более 1500 долларов в год) и громоздкости оборудования. Да и вряд ли в повседневной жизни возникают ситуации, когда надо знать свои абсолютные географические координаты с погрешностью 10-30 см.

В заключение части, повествующей о «теоретических» аспектах функционирования GPS, скажу, что Россия и в случае с космической навигацией пошла своим путем и развивает собственную систему ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Но из-за отсутствия должных инвестиций в настоящее время на орбите находятся лишь семь спутников из двадцати четырех, необходимых для нормального функционирования системы…

Краткие субъективные заметки пользователя GPS.

Так уж получилось, что о возможности определять свое местоположение с помощью носимого приборчика размерами с сотовый телефон я узнал году в девяносто седьмом из какого-то журнала. Однако замечательные перспективы, нарисованные авторами статьи, были безжалостно разбиты заявленной в тексте ценой навигационного аппарата — почти 400 долларов!

Года через полтора (в августе 1998) судьба занесла меня в маленький спортивный магазинчик в американском городе Бостон. Какого же было мое удивление и радость, когда на одной из витрин я случайно заметил несколько разных навигаторов, самый дорогой из которых стоил 250 долларов (простенькие же модели предлагались за $99). Конечно, уйти из магазина без прибора я уже не мог, поэтому принялся пытать продавцов о характеристиках, преимуществах и недостатках каждой модели. Ничего вразумительного от них я не услышал (и отнюдь не из-за того, что плохо знаю английский), так что пришлось разбираться во всем самому. И в результате, как это нередко бывает, была приобретена самая продвинутая и дорогая модель — Garmin GPS II+, а также специальный чехол к ней и шнур для питания от гнезда прикуривателя автомобиля. В магазине имелось еще два аксессуара для теперь уже моего аппарата — устройство для крепления навигатора на велосипедном руле и шнур для соединения с РС. Последний я долго крутил в руках, но, в конце концов, все же решил не покупать из-за немалой цены (немногим более 30 долларов). Как потом оказалось, шнур я не купил совершенно правильно, ибо все взаимодействие прибора с компьютером сводится к «сливке» в ЭВМ пройденного маршрута (а также, думаю, координат в режиме реального времени, но насчет этого есть определенные сомнения), да и то при условии покупки софта от Garmin. Возможность загружать в прибор карты, к сожалению, отсутствует.

Давать подробное описание своего прибора я не буду хотя бы потому, что он уже снят с производства (желающие ознакомиться с подробной технической характеристикой могут сделать это здесь ). Замечу лишь, что вес навигатора — 255 гр., размеры — 59х127х41 мм. Благодаря своему треугольному сечению аппарат исключительно устойчиво располагается на столе или панели приборов автомобиля (для более прочной фиксации в комплект входит липучка Velcro). Питание осуществляется от четырех пальчиковых батареек АА (их хватает лишь на 24 часа непрерывной работы) или внешнего источника. Попробую рассказать об основных возможностях моего прибора, которые, думаю, имеет подавляющее большинство присутствующих на рынке навигаторов.

С первого взгляда GPS II+ можно принять за мобильный телефон, выпущенный пару лет назад. Лишь только присмотревшись, замечаешь необычно толстую антенну, огромный дисплей (56х38 мм!) и малое, по телефонным меркам, количество клавиш.

При включении прибора начинается процесс сбора информации со спутников, а на экране появляется простенькая мультипликация (вращающийся земной шар). После первоначальной инициализации (которая в открытом месте занимает пару минут) на дисплее возникает примитивная карта неба с номерами видимых спутников, а рядом — гистограмма, свидетельствующая об уровне сигнала от каждого спутника. Кроме того, указывается погрешность навигации (в метрах) — чем больше спутников видит прибор, тем, разумеется, точнее будет определение координат.

Интерфейс GPS II+ построен по принципу «перелистываемых» страниц (для этого даже есть специальная кнопка PAGE). Выше была описана «страница спутников», а кроме нее, есть «страница навигации», «карта», «страница возврата», «страница меню» и ряд других. Следует заметить, что описываемый аппарат не русифицирован, однако даже с плохим знанием английского можно понять его работу.

На странице навигации отображаются: абсолютные географические координаты, пройденный путь, мгновенная и средняя скорости движения, высота над уровнем моря, время движения и, в верхней части экрана, электронный компас. Надо сказать, что высота определяется с гораздо большей погрешностью, чем две горизонтальные координаты (на этот счет есть даже специальная ремарка в руководстве пользователя), что не позволяет использовать GPS, например, для определения высоты парапланеристами. Зато мгновенная скорость вычисляется исключительно точно (особенно для быстродвижущихся объектов), что дает возможность использовать прибор для определения скорости снегоходов (спидометры которых имеют обыкновение значительно врать). Могу дать «вредный совет» — взяв напрокат автомобиль, отключите его спидометр (чтобы он насчитал поменьше километров — ведь оплата зачастую пропорциональна пробегу), а скорость и пройденное расстояние определяйте по GPS (благо он может вести измерения как в милях, так и в километрах).

Средняя скорость движения определяется по несколько странному алгоритму — время простоя (когда мгновенная скорость равна нулю) в вычислениях не учитывается (более логично, на мой взгляд, было бы просто делить пройденное расстояние на общее время поездки, но создатели GPS II+ руководствовались каким-то иными соображениями).

Пройденный путь отображается на «карте» (памяти аппарата хватает километров на 800 — при большем пробеге автоматически стираются самые старые метки), так что при желании можно посмотреть схему своих блужданий. Масштаб карты меняется от десятков метров до сотен километров, что, несомненно, исключительно удобно. Самое же замечательное состоит в том, что в памяти прибора имеются координаты основных населенных пункты всего мира! США, конечно, представлено более подробно (например, все районы Бостона присутствуют на карте с названиями), чем Россия (тут указано расположение лишь таких городов как Москва, Тверь, Подольск и т.п.). Представьте, например, что Вы направляетесь из Москвы в Брест. Находите в памяти навигатора «Брест», жмете специальную кнопку «GO TO», и на экране появляется локальное направление Вашего движения; глобальное направление на Брест; количество километров (по прямой, разумеется), оставшееся до точки назначения; средняя скорость и расчетное время прибытия. И так в любой точке мира — хоть в Чехии, хоть в Австралии, хоть в Таиланде…

Не менее полезной является так называемая функция возврата. Память аппарата позволяет записывать до 500 ключевых точек (waypoints). Каждую точку пользователь может называть по своему усмотрению (например, DOM, DACHA и т.п.), также предусмотрены различные пиктрограммки для отображения информации на дисплее. Включив функцию возврата к точке (любой из заранее записанных), владелец навигатора получает те же возможности, что и в описанном выше случае с Брестом (т.е. расстояние до точки, расчетное время прибытия и все остальное). У меня, например, был такой случай. Приехав в Прагу на автомобиле и устроившись в гостинице, мы с приятелем отправились в центр города. Оставив машину на стоянке, пошли побродить. После бесцельной трехчасовой прогулки и ужина в ресторане мы поняли, что совершенно не помним, где оставили машину. На улице ночь, мы — на одной из маленьких улочек незнакомого города… К счастью, прежде чем покинуть автомобиль, я записал его местоположение в навигатор. Теперь же, нажав пару кнопок на аппарате, я узнал, что машина стоит в 500 метрах от нас и через 15 минут мы уже слушали тихую музыку, направляясь на автомобиле в гостиницу.

Кроме движения к записанной метке по прямой, что не всегда удобно в условиях города, Garmin предлагает функцию TrackBack — возврат по своему пути. Грубо говоря, кривая движения аппроксимируется рядом прямолинейных участков, а в точках излома ставятся метки. На каждом прямолинейном участке навигатор ведет пользователя к ближайшей метке, по достижении же ее осуществляется автоматическое переключение на следующую метку. Исключительно удобная функция при езде на автомобиле по незнакомой местности (сигнал со спутников сквозь здания, конечно, не проходит, поэтому, чтобы получить данные о своих координатах в условиях плотной застройки, приходится искать более-менее открытое место).

Я не буду дальше углубляться в описание возможностей прибора — поверьте, что кроме описанных, в нем есть еще масса приятных и нужных примочек. Одна смена ориентации дисплея чего стоит — можно использовать аппарат как в горизонтальном (автомобильном), так и в вертикальном (пешеходном) положении (см. рис.3).

Одной из основных же прелестей GPS для пользователя я считаю отсутствие какой-либо платы за пользование системой. Купил один раз прибор — и наслаждайся!

Заключение.

Я думаю, нет нужды перечислять области применения рассмотренной системы глобального позиционирования. GPS-приемники встраивают в автомобили, сотовые телефоны и даже наручные часы! Недавно я встретил сообщение о разработке чипа, совмещающего в себе миниатюрный GPS-приемник и модуль GSM — устройствами на его базе предлагается оснащать собачьи ошейники, чтобы хозяин мог без труда обнаружить потерявшегося пса посредством сотовой сети.

Но в любой бочке меда есть ложка дегтя. В данном случае в роли последнего выступают российские законы. Я не буду подробно рассуждать о юридических аспектах использования GPS-навигаторов в России (кое-что об этом можно найти здесь ), замечу лишь, что теоретически высокоточные навигационные приборы (коими, без сомнения являются даже любительские GPS-приемники) у нас запрещены, а их владельцев ждет конфискация аппарата и немалый штраф.

К счастью для пользователей, в России строгость законов компенсируется необязательностью их выполнения — например, по Москве разъезжает огромное количество лимузинов с шайбой-антенной GPS-приемников на крышке багажника. Все более-менее серьезные морские суда оборудованы GPS (и уже выросло целое поколение яхтсменов, с трудом ориентирующихся в пространстве по компасу и прочим традиционным средствам навигации). Надеюсь, власти не будут вставлять палки в колеса техническому прогрессу и в ближайшее время легализуют пользование GPS-приемниками в нашей стране (отменили же разрешения на сотовые телефоны), а также дадут добро на рассекречивание и тиражирование подробных карт местности, необходимых для полноценного использования автомобильных навигационных систем.

Принципы работы GPS-навигаторов — Ferra.ru

В состав спутниковой системы GPS входят как минимум 24 искусственных спутника Земли, находящихся на различных круговых орбитах, плоскости которых разнесены по долготам через 60° и наклонены к плоскости экватора на 55°. Период обращения одного спутника составляет порядка 12 часов.

Регулярно спутники передают на Землю:

  • свой статус (сообщение об исправности или неисправности)
  • текущую дату
  • текущее время
  • данные альманаха (орбитальные данные всех спутников)
  • точное время отправки всей совокупности сообщений
  • бортовые эфемериды (расчётные координаты своего положения в этот момент времени)

GPS-приёмник на основании полученной со спутников информации определяет расстояние до каждого спутника и вычисляет свои координаты по законам геометрии. При этом для определения двух координат (широта и долгота) достаточно получить сигналы с трёх спутников, а для определения высоты над поверхностью Земли – с четырёх.

С учётом распространения радиосигналов расстояние до спутников определяется по задержке времени приёма сообщения GPS-приёмником относительно времени отправки сообщения с борта спутника. Конечно, для точного определения этой задержки часы на спутниках и часы в GPS-приёмнике должны быть синхронны, что обеспечивается синхронизацией часов приёмника по информации, содержащейся, как указывалось выше, в сигналах спутников.

Основным источником погрешности в системе GPS было наличие так называемого режима «ограниченного доступа». В этом режиме в сигналы спутников Министерством обороны США априорно вводилась погрешность, позволяющая определять местоположение с точностью 30-100 м, хотя принципиально точность GPS-систем может достигать нескольких сантиметров. С 1 мая 2000 года режим «ограниченного доступа» был отключён. Теперь любой человек в любой точке Земли может пользоваться этой системой. Другими источниками погрешности являются неудачная геометрия взаимного расположения спутников, многолучевое распространение радиосигналов (влияние переотражённых радиоволн на приёмник), ионосферные и атмосферные задержки сигналов и др.

Система GPS позволяет определить местоположение в любой точке на суше, на море и в околоземном пространстве.

Как уже упоминалось, изначально система GPS была разработана для военных целей. Однако через некоторое время стало ясно, что эта система может очень сильно помогать людям для достижения других, «гражданских» целей.

На сегодняшний день система GPS очень широко используется в решении навигационных и картографических (геодезических) целей.

Спутниковые методы определения пространственных координат нашли массовое применение в современных геодезических измерениях, в первую очередь благодаря системе GPS, стабильно работающей на протяжении всего своего существования и ставшей доступной широкому кругу гражданских пользователей. Однако всё чаще возникают обсуждения того, что дальнейшее повышение точности и надёжности определения пространственных координат в любой точке Земли может быть обеспечено только за счёт совместного использования различных глобальных навигационных спутниковых систем, таких, например, как российская ГЛОНАСС и разворачиваемая в Европе Galileo.

Несмотря на то что уровень развёртывания ГЛОНАСС в настоящее время не находится в полном функциональном состоянии, приём и совместная обработка сигналов ГЛОНАСС и NAVSTAR позволяют увеличить производительность при выполнении спутниковых геодезических измерений в сложных условиях (например, городской застройки), когда число видимых спутников системы NAVSTAR сокращается. Поэтому в настоящее время многие разработчики аппаратуры пользователей создают спутниковые приёмники, способные работать одновременно с различными системами (например, компания Topcon Positioning System). Эти приёмники, в отличие от приёмников GPS, принимающих только сигналы NAVSTAR, называют GNSS-приёмниками (Global Navigation Satellite System, аналог русского обозначения ГНСС), а используемые методы обработки – GNSS-технологиями.

Система GPS выглядит предпочтительнее для навигационных целей, чем ГЛОНАСС. Это связано с тем, что навигационных решений под ГЛОНАСС для обычных пользователей практически не существует и рынок ГЛОНАСС пока слабо развит.

Современные геодезические измерения невозможно представить без использования спутниковых технологий определения пространственных координат. Первые GPS-приёмники появились ещё в начале 1980-х годов. За время существования они претерпели серьёзные изменения, но неизменным остался способ определения координат. Главной особенностью современного развития геодезического оборудования является стремление упростить процесс измерений и объединить всё необходимое в одном приборе.

Итак, в зависимости от характера решаемых задач GPS-системы можно разделить на два класса – навигационные приёмники и системы геодезической точности.

Навигационные приёмники обеспечивают устойчивое определение текущих координат с точностью десятков метров и являются относительно недорогими устройствами. Приборы этого класса просты в эксплуатации, портативны, а время, необходимое для получения координат в точке, составляет секунды или единицы минут.

Геодезические GPS-системы являются значительно более сложными устройствами, но они позволяют достигать точности привязки объекта до долей сантиметра, соответственно, стоимость таких систем существенно выше и может составлять десятки тысяч долларов.

Хотя повышение точности результатов желательно в любой раgботе, для задач привязки на местности различных объектов точность, обеспечиваемая навигационными приёмниками, является вполне удовлетворительной, а в особо критичных случаях может быть повышена за счёт проведения большого числа измерений и их последующей статистической обработки.

В целом весь спектр моделей GPS-приёмников по особенностям использования можно разделить на четыре большие группы.

  • Персональные GPS-приёмники индивидуального применения. Эти модели отличаются малыми габаритами и широким набором сервисных функций: от базовых навигационных, включая возможность формирования и расчёта маршрутов следования, до функции приёма и передачи электронной почты.
  • Автомобильные GPS-приёмники, которые предназначены для установки в любом наземном транспортном средстве и имеют возможность подключения внешней приёмо-передающей аппаратуры для автоматической передачи параметров движения на диспетчерские пункты.
  • Морские GPS-приёмники, оснащённые ультразвуковым эхолотом, а также дополнительными сменными картриджами с картографической и гидрографической информацией для конкретных береговых районов.
  • Авиационные GPS-приёмники, используемые для пилотирования летательных аппаратов, включая коммерческую авиацию.

Важно отметить, что использование GPS в навигационных целях тесно связано с применением современных информационных технологий – компьютерных баз данных и Геоинформационных систем (ГИС).

Как можно понять, далеко не все из вышеперечисленных устройств интересны нашим читателям, а, как следствие, и нам. Поэтому сложнейшие геодезические приборы мы учитывать не будем. А своё внимание сконцентрируем на персональных, автомобильных и, возможно, морских GPS-приёмниках, а также на аксессуарах для них.

Как работает GPS навигация | принцип работы GPS

Как работает GPS навигацияКак работает GPS навигация

Практически каждый современный телефон уже имеет встроенный модуль GPS-приемника, с помощью которого имеется возможность достаточно точно определить свое местоположение на планете Земля. Для работы и точного определения местоположения GPS не требуется интернет и вышки мобильных сетей. Система может работать даже посреди пустыни вдалеке от цивилизации. Мы знаем, что это возможно благодаря спутникам, — но как именно это работает?

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт.

24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. Практически всегда на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.

Как работает GPS навигация

Поскольку известно, что каждый из спутников делает по два оборота вокруг планеты за сутки, то становиться нетрудно вычислить, что скорость их движения составляет приблизительно 14 000 км/ч. Само расположение спутников, так же как и наклон их орбит, отнюдь не случайно: они расположены так, чтобы из любой открытой точки планеты было видно хотя бы четыре спутника — именно таково минимальное количество, необходимое для определения местоположения объекта на Земле. Почему именно четыре и как это работает?

Чтобы измерить какое-то очень длинное расстояние, мы можем послать сигнал и замерить время, за которое он достигнет нужной точки либо отразится от нее и дойдет до нас снова (главное при этом точно знать скорость движения сигнала). Во втором случае время придется делить на два, поскольку сигнал прошел удвоенное расстояние. Этот способ носит название эхолокация, и спектр его применения весьма широк: начиная от изучения формы морского дна (здесь сигналом выступает ультразвук) и заканчивая радарами (сигнал — электромагнитные волны).

Проблема в том, что при использовании этого способа мы должны заранее знать, где находится приемник. В случае с системой GPS приемником сигнала являетесь именно вы, стоящий на Земле. Спутник не имеет никакого представления о вашем местоположении, он не знает, где вы, и никогда не узнает, поэтому отправляет сигнал сразу на всю поверхность планеты под ним. В этом сигнале он кодирует информацию о том, где расположен сам, а также в какое время по его собственным часам сигнал был отправлен, и на этом его работа заканчивается.

GPS-модуль у вас в руках получил координаты спутника и информацию о времени отправки сигнала. Программа в вашем телефоне умножает скорость распространения сигнала (то есть скорость света) на разницу между временем получения и временем отправки, высчитывая таким образом расстояние до каждого спутника. Если бы часы модуля были в точности синхронизированы с часами всех сателлитов, то понадобилось бы еще два спутника, чтобы определить местоположение с помощью так называемой триангуляции.

Чтобы понять принцип действия триангуляции, давайте на секунду перейдем в двухмерное пространство. Представьте себе две точки на плоскости, расположенные на известном расстоянии друг от друга, допустим 5 метров. Вы также знаете, что какая-то новая точка находится, в свою очередь, на известных расстояниях от первых двух — например 3 и 4 метра соответственно. Чтобы найти эту новую точку, вы можете провести две окружности с радиусами 3 и 4 метра и центрами в первой и второй точках соответственно. Две полученные окружности пересекутся ровно в двух точках, одна из которых и будет искомой.

Вернемся в трехмерное пространство. Теперь нам уже нужны три опорные точки, которыми являются наши спутники, и «чертить» вокруг них мы будем не окружности, а сферы. Все три сферы сразу в общем случае будут иметь две точки пересечения, но одна из них находится «над» местом расположения спутников, очень высоко в космосе — она нам явно не нужна. А вот вторая — это как раз ваше местоположение.

Для измерения местоположения в пространстве необходимо знать точное время и иметь точный инструмент для его измерения.

Реальная задача осложняется тем обстоятельством, что время на часах вашего телефона не совпадает с тем, что показывают часы спутников, и ваши часы являются на несколько порядков менее точными. Вообще говоря, время создает несколько дополнительных сложностей в решении этой проблемы. Так, например, спутники подвержены эффектам релятивистского и гравитационного искажения времени. На самом деле скорость хода часов, согласно теории относительности, зависит в том числе от силы гравитации в той точке, где эти часы расположены, а также от скорости их движения.

На высоте 20 000 километров над Землей гравитация достаточно слаба, а спутники летают, как мы уже разобрались, довольно быстро. Из-за суммы этих эффектов часы приходится корректировать в общей сложности на 38 миллисекунд за сутки. Если кажется, что это мало, напомню, что электромагнитный сигнал, движущийся со скоростью света, пройдет за это время приблизительно 11 000 км — примерно такой и может быть погрешность при определении координат.

Вторая проблема — точность самих часов. При указанных скоростях сигналов каждая миллионная доля секунды, измеренная с погрешностью, может спровоцировать большие ошибки. Из-за этого спутники старого формата позволяют определить местоположение не очень точно и могут «обмануть» на целых 10 метров. Начиная с 2010-го на замену старым запускают новые спутники, оснащенные атомными часами, и их погрешность уменьшилась до 1 метра.

Другой путь решения проблемы — специальные наземные станции коррекции. Они используются на территории некоторых стран и принцип их работы таков: принимая данные о расположении того или иного объекта, они корректируют их, и в результате пользователь гаджета получает более достоверную информацию о собственном местоположении.

Чем больше источников сигнала, тем точнее результат измерения, вот почему в мегаполисе ориентироваться по навигатору будет проще, чем в пустыне.

Однако атомные часы – устройство громоздкое и дорогостоящее, поэтому, чтобы решить проблему времени приемника, нужен еще один спутник. Он тоже передает информацию о своем местоположении и моменте отправки сигнала. И теперь наше пространство становится не трех-, а четырехмерным. Неизвестными являются широта, долгота, высота и время приемника в момент отправки сигналов. Положение в этих четырех измерениях нам и нужно определить, для чего по аналогии с двухмерным и трехмерным пространствами нам нужны именно четыре спутника.

Конечно же, в реальности хорошо, когда удается «поймать» сигнал от большего числа источников, и в крупных городах и населенных районах с этим проблемы нет: можно легко увидеть одновременно десяток сателлитов, которые обеспечат достаточно высокую для бытового использования точность.

Однако начальный поиск спутников тоже не самая простая задача. В старых аппаратах устройству могло потребоваться немало времени, вплоть до нескольких минут, чтобы уловить и разобрать сигнал от нужного числа космических объектов. Тогда это называлось «холодный старт», и для того, чтобы ускорить процесс, придумали получать данные о текущем местоположении небесных тел из интернета. Но при перемещении приемника на большое расстояние (десятки километров) или при очень долгом бездействии «холодный старт» приходилось производить заново. В современных устройствах модуль периодически включается сам, обновляя информацию, поэтому подобной проблемы больше нет.

Кстати говоря, до 2000 года точность для гражданских лиц была искусственно занижена, и узнать свое местоположение позволялось не ближе, чем в 100 метрах от реального. Поскольку GPS создавалась, финансируется и поддерживается министерством обороны США, военные хотели иметь определенное преимущество. С развитием и все более активным внедрением технологии в жизнь гражданского населения это искусственное ограничение было убрано.

Спутник не получает данных ни о каких GPS-устройствах на поверхности Земли и в воздушном пространстве, поэтому услуга бесплатная. Мы просто не сможем узнать, кто конкретно ей пользуется. Выходит, рецепт решения общечеловеческой проблемы под кодовым названием «А где я нахожусь?» чрезвычайно прост: односторонняя связь и нехитрые математические расчеты.

Сегодня область применения системы глобального позиционирования GPS достаточно обширна. Всё чаще GPS-приемники встраивают в мобильные телефоны и коммуникаторы, в автомобили, часы и даже в собачьи ошейники. Люди привыкают к такому благу как GPS навигация, и пройдет совсем немного времени как они уже не смогут обойтись без нее. Именно поэтому стоит сказать пару слов о недостатках GPS.

Недостатками GPS навигации является то, что при определенных условиях сигнал может не доходить до GPS-приемника, поэтому практически невозможно определить свое точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле.

Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приема сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования.

Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приему сигналов GPS.

Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS-приемника, но и своим собственным глазам.

Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Прецеденты уже были.

У системы GPS есть менее популярная и известная альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), и каждая из этих систем стремится получить широкое распространение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*