определение, формулы и как измеряется
В данной статье мы подробно разберем что такое напряжение, как просто его представить и измерить.
Определение
Напряжение — это электродвижущая сила, которая толкает свободные электроны от одного атома к другому в том же направлении.
В первые дни электричества напряжение было известно как электродвижущая сила (ЭДС). Именно поэтому в уравнениях, таких как закон Ома, напряжение представлено символом Е.
Алессандро Вольта
Единицей электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.
Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и углубил понимание электричества.
Представление напряжения
Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток. Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления).
Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.
Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.
Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.
Напряжение = [Джоуль ÷ Кулон]
1 вольт = 1 джоуль на кулон
100 вольт = 100 джоулей на кулон
1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )
В чем измеряется напряжение
Мы измеряем напряжение в единицах «Вольт», которые обычно обозначаются просто буквой «V» на чертежах и технической литературе. Часто необходимо количественно определить величину напряжения, это делается в соответствии с единицами СИ, наиболее распространенные величины напряжения, которые вы увидите:
- мегавольт (мВ)
- киловольт (кВ)
- вольт (В)
- милливольт (мВ)
- микровольт (мкВ)
Напряжение всегда измеряется в двух точках с помощью устройства, называемого вольтметром. Вольтметры являются либо цифровыми, либо аналоговыми, причем последний является наиболее точным. Вольтметры обычно встроены в портативные цифровые мультиметровые устройства, как показано ниже, они являются распространенным и часто важным инструментом для любого электрика или инженера-электрика. Обычно вы найдете аналоговые вольтметры на старых электрических панелях, таких как распределительные щиты и генераторы, но почти все новое оборудование будет поставляться с цифровыми счетчиками в качестве стандарта.
Портативный цифровой мультиметр с функцией вольтметра
На электрических схемах вы увидите устройства вольтметра, обозначенные буквой V внутри круга, как показано ниже:
Расчет напряжения
В электрических цепях напряжение может быть рассчитано в соответствии с треугольником Ома. Чтобы найти напряжение (V), просто умножьте ток (I) на сопротивление (R).
Напряжение (V) = ток (I) * сопротивление (R)
V = I *R
Пример
Ток в цепи (I) = 10 А
Сопротивление цепи (R) = 2 Ом
Напряжение (V) = 10 А * 2 Ом
Ответ: V = 20В
Резюме
- Напряжение — это сила, которая перемещает электроны от одного атома к другому
- Напряжение также известно как разность потенциалов
- Напряжение измеряется в единицах «вольт» (В)
- Батареи увеличивают потенциальную энергию электронов
- Лампочки и другие нагрузки уменьшают потенциальную энергию электронов
- Напряжение измеряется с помощью вольтметра
- Напряжение цепи можно рассчитать путем умножения тока и сопротивления
Потенциал. Разность потенциалов. Напряжение. | |
Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду: — энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле. | |
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной. За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора. |
|
— следствие принципа суперпозиции полей (потенциалы складываютсяалгебраически). | |
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность. В СИ потенциал измеряется в вольтах: |
|
Разность потенциалов | |
| |
Напряжение — разность значений потенциала в начальной и конечнойточках траектории. Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля. Разность потенциалов (напряжение) не зависит от выбора системы координат! | |
Единица разности потенциалов
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж. | |
Связь между напряженностью и напряжением. | |
Из доказанного выше: → напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d). | |
Из этого соотношения видно:
| |
Эквипотенциальные поверхности. ЭПП — поверхности равного потенциала. Свойства ЭПП: — работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается; — вектор напряженности перпендикулярен к ЭПП в каждой ее точке. | |
| |
Измерение электрического напряжения (разности потенциалов) Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр. | |
Потенциальная энергия взаимодействия зарядов. |
|
Потенциал поля точечного заряда |
|
| |
Потенциал заряженного шара а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (!!!) и равны потенциалу на поверхности шара. б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда. | |
Перераспределение зарядов при контакте заряженных проводников. Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными. |
|
Электрическое напряжение. Видеоурок. Физика 8 Класс
На прошлых уроках мы узнали о том, что такое сила тока, и о том, что эта величина характеризует действие электрического тока. Мы уже рассмотрели несколько факторов, от которых она зависит, теперь рассмотрим другие параметры, которые на нее влияют. Для этого достаточно провести простой эксперимент: подключить к электрической цепи сначала один источник тока, потом последовательно два одинаковых, а затем и три одинаковых источника, при этом каждый раз измеряя силу тока в цепи. В результате измерений будет видна простая зависимость: сила тока растет пропорционально количеству подключаемых источников. Почему же так получается? Функция источника тока – создавать электрическое поле в цепи, соответственно, чем больше включено последовательно в цепь источников, тем более сильное электрическое поле они создают. Из этого можно сделать вывод, что электрическое поле влияет на силу тока в цепи. При этом при перемещении зарядов по проводнику совершается работа электрического тока, что говорит о том, что работа электрического поля определяет силу тока в цепи.
С другой стороны, можно вспомнить аналогию между протеканием электрического тока в проводнике и воды в трубе. Когда речь идее о массе воды, протекающей через сечение трубы, то это можно сравнивать с величиной заряда, который прошел через проводник. А перепад высоты в трубе, который и формирует напор и течение воды, можно сравнить с таким понятием, как электрическое напряжение.
Для характеристики работы электрического поля по перемещению заряда введена такая величина, как электрическое напряжение.
Определение. Электрическое напряжение – физическая величина, которая равна работе электрического поля по перемещению единичного заряда из одной точки в другую.
Обозначение. напряжение.
Единица измерения. вольт.
Названа единица измерения напряжения в честь итальянского ученого Алессанро Вольта (1745–1827) (рис. 1).
Рис. 1. Алессанро Вольта (Источник)
Если привести стандартный пример о смысле всем известной надписи на любых домашних бытовых приборах «220 В», то она означает, что на участке цепи совершается работа 220 Дж по перемещению заряда 1 Кл.
Формула для расчета напряжения:
Где:
работа электрического поля по перенесению заряда, Дж;
заряд, Кл.
Следовательно, единицу измерения напряжения можно представить так:
Между формулами для вычисления напряжения и силы тока существует взаимосвязь, на которую следует обратить внимание: и . В обеих формулах присутствует величина электрического заряда , что может оказаться полезным при решении некоторых задач.
Для измерения напряжения используют прибор, который называется вольтметр (рис. 2).
Рис. 2. Вольтметр (Источник)
Существуют различные вольтметры по особенностям их применения, но в основе принципа их работы лежит электромагнитное действие тока. Обозначаются все вольтметры латинской буквой , которая наносится на циферблат приборов и используется в схематическом изображении прибора.
В школьных условиях используются, например, вольтметры, изображенные на рисунке 3. С их помощью проводятся измерения напряжения в электрических цепях при проведении лабораторных работ.
Рис. 3. Вольтметры
Основными элементами демонстрационного вольтметра являются корпус, шкала, стрелка и клеммы. Клеммы обычно подписаны плюсом или минусом и для наглядности выделены разными цветами: красный – плюс, черный (синий) – минус. Сделано это с целью того, чтобы заведомо правильно подключать клеммы прибора к соответствующим проводам, подключенным к источнику. В отличие от амперметра, который включается в разрыв цепи последовательно, вольтметр включается в цепь параллельно.
Безусловно, любой электрический измерительный прибор должен минимально влиять на исследуемую цепь, поэтому вольтметр имеет такие конструктивные особенности, что его через него идет минимальный ток. Обеспечивается такой эффект подбором специальных материалов, которые способствуют минимальному протеканию заряда через прибор.
Схематическое изображение вольтметра (рис. 4):
Рис. 4.
Изобразим для примера электрическую схему (рис. 5), в которой подключен вольтметр.
Рис. 5.
В цепи почти минимальный набор элементов: источник тока, лампа накаливания, ключ, амперметр, подключенный последовательно, и вольтметр, подключенный параллельно к лампочке.
Замечание. Лучше начинать сборку электрической цепи со всех элементов, кроме вольтметра, а его уже подключать в конце.
Существует множество различных видов вольтметров с различающимися шкалами. Поэтому вопрос о вычислении цены прибора в данном случае очень актуален. Очень распространены микровольтметры, милливольтметры, просто вольтметры и т. д. По их названиям понятно, с какой кратностью производятся измерения.
Кроме того, вольтметры делят на приборы постоянного тока и переменного тока. Хотя в городской сети и переменный ток, но на данном этапе изучения физики мы занимаемся постоянным током, который подают все гальванические элементы, поэтому нас и будут интересовать соответствующие вольтметры. То, что прибор предназначен для цепей переменного тока, принято изображать на циферблате в виде волнистой линии (рис. 6).
Рис. 6. Вольтметр переменного тока (Источник)
Замечание. Если говорить о значениях напряжений, то, например, напряжение 1 В является небольшой величиной. В промышленности используются гораздо большие значения напряжений, измеряемые сотнями вольт, киловольтами и даже мегавольтами. В быту же используется напряжение 220 В и меньшее.
На следующем занятии мы узнаем, что такое электрическое сопротивление проводника.
Список литературы
- Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
- Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Классная физика (Источник).
- YouTube (Источник).
- YouTube (Источник).
Домашнее задание
- Стр. 92: вопросы № 1, 2; стр. 93: вопросы № 1–4; стр. 95: вопросы № 1–4, упражнение № 16. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Вычислите, какой заряд прошел через проводник, если при напряжении 36 В электрическое поле выполнило работу 72 Дж.
- Определите цену деления прибора:
(Источник) - Подготовьте доклад об устройстве вольтметра и видах этого прибора.
Напряжение зарядки аккумуляторов — Мобильные Электросистемы
НАПРЯЖЕНИЕ, ВРЕМЯ и ТЕМПЕРАТУРА — три переменных, от которых зависит качество зарядки аккумуляторов. Управляет этими переменными зарядное устройство. Если оно делает это не правильно, дорогие аккумуляторные батареи хронически недозаряжаются или перезаряжаются. В результате сохраняют меньше энергии и раньше времени выходит из строя.
В продвинутых системах зарядки не существует никакого волшебства. По большому счету, все что они делают – это увеличивают разницу между текущим напряжением аккумулятора и напряжением зарядного устройства. Чем выше напряжение, тем больший ток поступает в аккумулятор и тем быстрее он заряжается. Однако процесс зарядки необходимо точно контролировать, иначе аккумулятор легко повредить.
Установить зависимость между зарядным напряжением и током, поглощаемым аккумулятором позволяет простой эксперимент. Разрядим аккумуляторную батарею с жидким электролитом емкостью 100 Ач до 50% и подключим ее к источнику зарядки с максимальным током 180 А. Выставим на блоке питания напряжение 13,2 Вольта и измерим ток, потребляемый аккумулятором. После этого увеличим напряжение и вновь измерим поглощаемый аккумуляторной батареей ток.
Результаты измерений приведены на графике. Красная линия показывает, что заряженный на 50% аккумулятор при напряжении 13,2 В потребляет 35 А, а при напряжении 14,8 В — 160 А. Таким образом при увеличение напряжения на 1,6 Вольта скорость зарядки возрастает на 457%.
Заряженный на 70-75% аккумулятор ведет себя иначе (черная линия на графике). При напряжении 13,2 В он «думает», что уже полностью заряжен и потребляет всего около 1 А. Но стоит повысить напряжение до 14,8 В и ток резко возрастает до 60A. Улучшение зарядки на 6000%!
Контрольные напряжения были выбраны не случайно. Именно эти значения чаще всего встречаются в реальной жизни. Напряжение 13,2V появляется, если используется диодный разделитель. Или регулятор напряжения генератора имеет встроенный температурный компенсатор.
Температурная компенсация используется в большинстве современных генераторов. Когда двигательный отсек нагревается и теплый воздух проходит через регулятор, то генератор считает аккумулятор заряженным. В результате примерно через 20 минут работы стандартного автомобильного генератора напряжение уменьшается с 14 В до 13,2 В. Для стартового аккумулятора это нормально, но для тягового гарантирует, что он никогда не зарядятся полностью. Именно поэтому на транспортные средства с аккумуляторами глубокого разряда устанавливают зарядные устройства, работающие от генератора
Мы выяснили, что с повышением напряжения ток, потребляемый аккумулятором многократно возрастает. Но не расходуется ли получаемая аккумулятором дополнительная энергия на нагрев и газообразование? Сохраняет ли аккумулятор ее для дальнейшего использования? Не оказывается ли быстрый заряд пустой тратой времен, которая в итоге приводит к разрушению аккумулятора?
Сомнения развеивает второй эксперимент. Возьмем четыре одинаковых аккумулятора с жидким электролитом емкостью 100 Ач каждый. Соединим их параллельно и разрядим до одного и того же уровня. Затем по очереди зарядим при различном напряжении. Замерим потребляемый аккумулятором во время зарядки ток и с помощью счетчика ампер часов определим, какой реальный заряд получила каждая батарея. Температуру аккумуляторов во время зарядки также будем контролировать. Если она повысится до 50 град. C, значит электролит может закипеть и такой режим опасен для аккумулятора.
После того как зарядка завершена, проверим действительно ли аккумуляторы сохранили полученную электрическую энергию. Для этого по очереди к каждому аккумулятору подключим инвертор, нагрузкой которого будут лампы накаливания мощностью 400 Вт. Если во время зарядки аккумулятор получил большее количество ампер часов, и действительно сохранил их, то подключенные к нему лампы должны светится дольше.
Результаты эксперимента позволяют ответить на следующие вопросы
1) Получает ли аккумулятор больше энергии в процессе быстрой зарядки? Да. Эксперимент показал, что при напряжении 13,3 В аккумулятор получил 21 Ач, а во время зарядки при напряжении 14,8 В — 60 Ач. Улучшение составило около 300%.
2) Действительно ли аккумулятор сохранил дополнительную энергию или она пошла на нагрев и газообразование? Тест продемонстрировал, что аккумулятор заряженный при 13,2 В питал инвертор в течение 48 минут. А заряжавшийся при 14,8 В проработал при той же нагрузке 114 минут. Поскольку этот аккумулятор был единственным источником энергии для инвертора, следовательно, во время зарядки он получил и сохранил дополнительные ампер часы. Улучшение составило 230%.
3) Будет ли аккумулятор кипеть при зарядке с высокой скоростью? Во время зарядки, температура аккумулятора повысилась с 18 до 32 градусов C. До опасных 50 градусов далеко. Кроме того, в тесте использовалось зарядное устройство мощностью 150 А. Чтобы воспроизвести такие испытания в реальной жизни с аккумуляторной батареи емкостью 400 Ач потребуется генератор или зарядное устройство мощностью 600 А. Маловероятно, что кто-либо располагает такими устройствами зарядки
6) Есть ли другие преимущества от зарядки при повышенном напряжении? Да, во время зарядки происходит десульфатация, увеличивающая срок службы аккумулятора. Если зарядка идет от генератора, то время работы двигателя и расходы на топливо, связанные с зарядкой, уменьшаются.
Негативных последствий от зарядки при повышенном напряжении для аккумуляторов не существует
Если на основе полученных данных создать компьютерную программу и записать ее в микропроцессор, то созданное на его основе зарядное устройство увеличит срок службы аккумуляторов и заставит их работать дольше.
Заряд и напряжение на конденсаторе
§ 10. Заряд и разряд конденсатора
Конденсатор накапливает электрические заряды — заряжается. Накопление зарядов происходит в том случае, если конденсатор подключить к источнику электрической энергии.
Процесс заряда конденсатора (рис. 6). При установке ключа на контакт 1 пластины конденсатора окажутся подключенными к батарее и на них появятся противоположные по знаку электрические заряды («+» и «-»). Произойдет заряд конденсатора и между его пластинами возникнет электрическое поле. При заряде конденсатора свободные электроны правой пластины переместятся по проводнику в направлении положительного полюса батареи и на этой пластине останется недостаточное количество электронов, в результате чего она приобретет положительный заряд.
Свободные электроны с отрицательного полюса батареи переместятся на левую пластину конденсатора и на ней появится избыток электронов — отрицательный заряд.
Таким образом, в проводах, соединяющих пластины конденсатора с батареей, будет протекать электрический ток, измеряемый миллиамперметром. Если между конденсатором и батареей не включено большое сопротивление, то время заряда конденсатора очень мало и ток в проводах протекает кратковременно.
При заряде конденсатора энергия, сообщаемая батареей, переходит в энергию электрического поля, возникающего между пластинами конденсатора.
Процесс разряда конденсатора (см. рис. 6). Если ключ установить на контакт 2 , пластины заряженного конденсатора окажутся соединенными между собой и стрелка миллиамперметра мгновенно отклонится и затем вновь установится на нулевом делении. Произойдет разряд конденсатора и исчезнет электрическое поле между его пластинами.
При разряде конденсатора «лишние» электроны с левой пластины переместятся по проводам к правой пластине, где их недостает, и когда количество электронов на пластинах конденсатора станет одинаковым, процесс разряда закончится и ток в проводах исчезнет.
Энергия электрического поля конденсатора при его разряде расходуется на работу, связанную с перемещением зарядов — на создание электрического тока.
Время разряда конденсатора через провода, обладающие малым сопротивлением, также весьма мало.
Процесс заряда и разряда конденсатора широко используется в различных устройствах.
Наиболее широко распространены бумажные, слюдяные и электролитические конденсаторы постоянной емкости.
Бумажный конденсатор КБГ. Бумажный конденсатор (рис. 7) представляет собой металлический корпус 1 , в котором герметически закрыт пакет 2 , состоящий из пластин, выполненных в виде алюминиевой фольги 5 и изолированных одна от другой тонкой бумагой 4 , пропитанной изоляционным материалом (церезином, галоваксом). Пластины конденсатора присоединяются к выводным лепесткам 3 , изолированным ог корпуса.
Слюдяной конденсатор КСО. Слюдяной конденсатор (рис. 7, б) состоит из двух пакетов металлических пластин и слюдяных прокладок. Между каждой парой пластин, принадлежащих разным пакетам, помещается тонкая прокладка из слюды. Собранные таким образом конденсаторы запрессовываются в пластмассу, из которой выходят наружу два лепестка по одному от каждого пакета пластин. Они служат для включения конденсатора в схему.
Электролитический конденсатор КЭ-2М. Электролитический конденсатор (рис. 7, в) представляет собой алюминиевый стакан 6 , в котором помещаются две алюминиевые ленты, скатанные в рулон. Между лентами проложена фильтровальная бумага, пропитанная электролитом. Одна алюминиевая лента соединяется с корпусом стакана, а вторая — с контактом 7 , укрепленным на его верхней крышке. При заряде конденсатора на поверхности алюминиевых лент, подключаемых к положительному полюсу источника тока, образуется пленка окиси алюминия, являющаяся диэлектриком. Так как эта пленка очень тонкая, то емкость электролитических конденсаторов относительно велика. Электролитические конденсаторы изготовляют емкостью до 2000 мкф при рабочем напряжении до 500 в .
Конденсаторы переменной емкости. Конденсаторы, емкость которых можно изменять, называются конденсаторами переменной емкости (рис. 8, а). Такой конденсатор состоит из неподвижных пластин (статора) и подвижных пластин (ротора), укрепленных на оси. При плавном повороте оси подвижные пластины в большей или меньшей степени входят в промежутки между неподвижными пластинами, не касаясь их, и емкость конденсатора плавно увеличивается. Когда подвижные пластины полностью входят в промежутки между неподвижными пластинами, емкость конденсатора достигает наибольшей величины.
Разновидностью конденсатора переменной емкости является конденсатор полупеременной емкости (рис. 8, б). Такой конденсатор имеет неподвижную (статор) и подвижную (ротор) пластины. Основание пластин изготовлено из керамики, а на него нанесен слой серебра.
Ротор укреплен с помощью винта. Поворачивая винт, перемещают ротор и при этом изменяется емкость конденсатора в пределах 2 — 30 пф .
§ 6. Заряд и разряд конденсатора
Чтобы зарядить конденсатор, надо, чтобы свободные электроны перешли из одной обкладки на другую. Переход электронов с одной обкладки конденсатора на другую происходит под действием напряжения источника по проводам, соединяющим этот источник с обкладками конденсатора.
В момент включения конденсатора зарядов на его обкладках нет и напряжение на нем равно нулю μ с =0. Поэтому зарядный ток определяется внутренним сопротивлением источника r в и имеет наибольшую величину:
I З max =E/ r в.
По мере накопления зарядов на обкладках конденсатора напряжение на нем увеличивается и падение напряжения на внутреннем сопротивлении источника будет равно разности ЭДС источника и напряжения на конденсаторе (Е- μ с). следовательно, зарядный ток
i з =(Е- μ с)/ r в.
Таким образом, с увеличением напряжения на конденсаторе ток заряда снизится и при μ с =Е становится равным нулю. Процесс изменения напряжения на конденсаторе и тока заряда во времени изображен на рис. 1. В самом начале заряда напряжение на конденсаторе резко возрастает, так как зарядный ток имеет наибольшее значение и накопление зарядов на обкладках конденсатора происходит интенсивно. По мере повышения напряжения на конденсаторе зарядный ток уменьшается и накопление зарядов на обкладках замедляется. Продолжительность заряда конденсатора зависит от его емкости и сопротивления цепи, увеличение которых приводит к возрастанию продолжительности заряда. С увеличением емкости конденсатора, возрастает количество зарядов, накапливаемых на его пластинах, а если увеличить сопротивление цепи уменьшится и зарядный ток, а это замедляет процесс накопления зарядов на этих обкладках.
Если обкладки заряженного конденсатора подключить к какому-либо сопротивлению R , то за счет напряжения на конденсаторе будет протекать разрядный ток конденсатора. При разряде конденсатора электронысодной пластины (при их избытке) будут переходить на другую (при их недостатке) и будет продолжается до тех пор, пока потенциалы обкладок не выравняются, т. е. напряжение на конденсаторе станет равным нулю. Изменение напряжения в процессе разряда конденсатора изображено на рис. 2. Ток разряда конденсатора пропорционален напряжению на конденсаторе (i р =μ с /R ), и его изменение во времени подобно изменению напряжения.
В начальный момент разряда напряжение на конденсаторе наибольшее (μ с =Е) и разрядный ток максимальный (I р max =E /R ), так что разряд происходит быстро. При п
Что такое напряжение, ток, сопротивление: разбираемся на примерах
Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.
И так будем разбираться во всем по порядку.
Электричество
Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.
Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.
Данное явление называется статическим электричеством. Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.
Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.
Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.
Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10-19 Кл (Кулон). Обозначается е или е–.
Напряжение
Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Единица измерения напряжения – Вольт (В или V). В формулах и расчетах напряжение обозначается буквой V. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).
Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд, высота водяного столба (давление) – это напряжение, а скорость потока воды – это электрический ток.
Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.
Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).
Электрический ток
Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.
Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!
Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·1018 электронов) за 1 секунду.
Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.
Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.
Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.
Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.
Сопротивление
Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω). В формулах и расчетах сопротивление обозначается буквой R. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.
Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.
На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.
Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.
Мощность
Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.
Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.
Единица измерения мощности – Ватт (обозначается Вт или W). В формулах и расчетах мощность обозначается буквой P. Для цепей переменного тока применяется термин Полная мощность, единица измерения – Вольт-ампер (В·А или V·A), обозначается буквой S.
И в завершение про Электрическую цепь. Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.
Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями R (Ом) от плюса к минусу течет электрический ток I (А) заставляющий светиться лампочку мощностью P (Вт). Не обращайте внимания на яркость лампы, это из-за плохого давления и малого потока воды батареек.
Фонарик, что представлен на фотографии, собран на базе конструктора «Знаток». Данный конструктор позволяет ребенку в игровой форме познать основы электроники и принцип работы электронных компонентов. Поставляется в виде наборов с разным количеством схем и разного уровня сложности.
Электрическое поле – FIZI4KA
Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.
Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.
Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.
Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
Способы электризации:
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
Взаимодействие зарядов. Два вида зарядов
Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.
Обозначение – \( q \), единица измерения в СИ – кулон (Кл).
Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.
Величина заряда тела будет равна
где \( N \) — число избыточных или недостающих электронов;
\( e \) — элементарный заряд, равный 1,6·10-19 Кл.
Важно!
Частица может не иметь заряда, но заряд без частицы не существует.
Электрические заряды взаимодействуют:
- заряды одного знака отталкиваются:
- заряды противоположных знаков притягиваются:
Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.
Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.
Закон сохранения электрического заряда
Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.
В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.
Полный электрический заряд \( (q) \) системы равен алгебраической сумме ее положительных и отрицательных зарядов \( (q_1, q_2 … q_N) \):
Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.
Закон Кулона
Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.
Закон Кулона формулируется так:
сила взаимодействия \( F \) двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям \( q_1 \) и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними \( r \):
где \( k=\frac{1}{4\pi\varepsilon_0}=9\cdot10^9 \) (Н·м2)/Кл2 – коэффициент пропорциональности,
\( \varepsilon_0=8.85\cdot10^{-12} \) Кл2/(Н·м2) – электрическая постоянная.
Коэффициент \( k \) численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.
Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.
Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:
где \( \varepsilon \) – диэлектрическая проницаемость среды.
Закон Кулона применим к взаимодействию
- неподвижных точечных зарядов;
- равномерно заряженных тел сферической формы.
В этом случае \( r \) – расстояние между центрами сферических поверхностей.
Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).
Действие электрического поля на электрические заряды
Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.
Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.
Свойства электрического поля заключаются в том, что оно:
- материально;
- создается зарядом;
- обнаруживается по действию на заряд;
- непрерывно распределено в пространстве;
- ослабевает с увеличением расстояния от заряда.
Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.
Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:
где \( \vec{E} \) – напряженность электрического поля, \( q \) – заряд.
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.
Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:
- сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
- записать для заряда условие равновесия или основное уравнение динамики материальной точки;
- выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
- если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
- записать математически все вспомогательные условия;
- решить полученную систему уравнений относительно неизвестной величины;
- проверить решение
Напряженность электрического поля
Напряженность электрического поля \( \vec{E} \) – векторная физическая величина, равная отношению силы \( F \), действующей на пробный точечный заряд, к величине этого заряда \( q \):
Обозначение – \( \vec{E} \), единица измерения в СИ – Н/Кл или В/м.
Напряженность поля точечного заряда в вакууме вычисляется по формуле:
где \( k=\frac{1}{4\pi\varepsilon_0}=9\cdot10^9 \) (Н·м2)/Кл2,
\( q_0 \) – заряд, создающий поле,
\( r \) – расстояние от заряда, создающего поле, до данной точки.
Напряженность поля точечного заряда в среде вычисляется по формуле:
где \( \varepsilon \) – диэлектрическая проницаемость среды.
Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.
Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.
Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности \( \vec{E} \).
Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.
Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.
Определяя направление вектора \( \vec{E} \) в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.
Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.
Принцип суперпозиции электрических полей
Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.
Принцип суперпозиции электрических полей: напряженность электрического поля системы \( N \) зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:
Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.
Потенциальность электростатического поля
Электрическое поле с напряженностью \( \vec{E} \) при перемещении заряда \( q \) совершает работу. Работа \( A \) электростатического поля вычисляется по формуле:
где \( d \) – расстояние, на которое перемещается заряд,
\( \alpha \) – угол между векторами напряженности электрического поля и перемещения заряда.
Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.
Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.
Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.
Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.
Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой \( W \), так как буквой \( E \) обозначают напряженность поля:
Потенциальная энергия заряда \( q \), помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.
Потенциал электрического поля. Разность потенциалов
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.
Обозначение – \( \varphi \), единица измерения в СИ – вольт (В).
Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.
Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:
Обозначение – \( \Delta\varphi \), единица измерения в СИ – вольт (В).
Иногда разность потенциалов обозначают буквой \( U \) и называют напряжением.
Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:
Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.
В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.
Потенциал поля точечного заряда \( q \) в точке, удаленной от него на расстояние \( r \), вычисляется по формуле:
Для наглядного представления электрического поля используют эквипотенциальные поверхности.
Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (\( r =R \), где \( R \) – радиус шара). Напряженность поля внутри шара равна нулю.
Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.
Свойства эквипотенциальных поверхностей
- Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
- Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.
Разность потенциалов и напряженность связаны формулой:
Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:
Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.
Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.
Алгоритм решения таких задач:
- установить характер и особенности электростатических взаимодействий объектов системы;
- ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
- записать законы сохранения и движения для объектов;
- выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
- составить систему уравнений и решить ее относительно искомой величины;
- проверить решение.
Проводники в электрическом поле
Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.
Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.
Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.
Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.
Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.
Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.
Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.
Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).
Диэлектрики в электрическом поле
Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.
В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.
В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.
Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.
Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.
Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.
Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.
Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:
В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.
Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.
Электрическая емкость. Конденсатор
Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.
Обозначение – \( C \), единица измерения в СИ – фарад (Ф).
Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.
Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:
Формула для вычисления электроемкости:
где \( q \) – заряд проводника, \( \varphi \) – его потенциал.
Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.
Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.
Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.
Электроемкость конденсатора рассчитывается по формуле:
где \( q \) – модуль заряда одной из обкладок,
\( U \) – разность потенциалов между обкладками.
Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.
Плоский конденсатор представляет две параллельные пластины площадью \( S \), находящиеся на расстоянии \( d \) друг от друга.
Электроемкость плоского конденсатора:
где \( \varepsilon \) – диэлектрическая проницаемость вещества между обкладками,
\( \varepsilon_0 \) – электрическая постоянная.
На электрической схеме конденсатор обозначается:
Виды конденсаторов:
- по типу диэлектрика – воздушный, бумажный и т. д.;
- по форме – плоский, цилиндрический, сферический;
- по электроемкости – постоянной и переменной емкости.
Конденсаторы можно соединять между собой.
Параллельное соединение конденсаторов
При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:
Общая емкость:
Последовательное соединение конденсаторов
При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.
Заряды конденсаторов при таком соединении равны:
Общее напряжение:
Величина, обратная общей емкости:
При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.
Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.
Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.
Энергия электрического поля конденсатора
Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.
Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:
Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.
Плотность энергии электрического поля:
где \( V \) – объем пространства между обкладками конденсатора.
Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.
Основные формулы раздела «Электрическое поле»
Электрическое поле
5 (100%) 1 vote