описание, устройство и принцип работы
Не все знатоки автомобилестроения знают, что в разное время в разных странах мира, включая СССР, на авто ставились необычные роторные двигатели внутреннего сгорания. Этот уникальный агрегат имеет свою большую историю и, возможно, хорошие перспективы на применение в будущем.
Что представляет собой роторный двигатель Ванкеля
Это простой по техническому решению силовой агрегат. Вместо нескольких поршней с кольцами и шатунами, он имеет один треугольный ротор, посаженный на вал. При этом вал не коленчатый, а эксцентриковый. Камеры сгорания расположены равномерно поочередно по всему кругу вращения ротора.
Роторный двигательВ роторном ДВС в 2 с лишним раза меньше деталей в сравнении с поршневым вариантом. Нет головки блока цилиндров с системой клапанов в её привычном виде и самой поршневой группы. Значительно меньше вес и габариты.
В настоящее время известно 5 разных типов роторных ДВС. Между собой они имеют существенные конструктивные отличия. Но главный принцип един для всех типов – ротор на эксцентриковом вале вместо поршней на кривошипно-шатунном механизме.
История создания роторного двигателя
Силовые агрегаты с ротором вместо поршневой группы получили устойчивое название «двигатель Ванкеля», по фамилии изобретателя. На самом деле в мире было разработано несколько типов роторных моторов, отличных от изобретения Ванкеля. Но первым в этой области еще в 1920-ых годах начал работать именно немецкий инженер Фридрих Ванкель.
Для двигателя требовались узлы и детали, производство которых возможно только с применением высоких технологий металлообработки, точнейшей подгонки, с чем в то время были определенные трудности. Поэтому быстро запустить изделие в серию сразу не получилось. К тому же началась Вторая мировая война, когда требовались не экспериментальные, а серийные проверенные изделия.
Работы над двигателем были завершены уже во Франции, куда попало оборудования из побежденной Германии, в 1957 году, в компании NSU под руководством инженера Вальтера Фройде.
Применение двигателя Ванкеля на Западе и в СССР
Первый роторный двигатель мощностью 57 л.с. был установлен в 1957 году на спорткар фирмы NSU «Спайдер». Спорткар развивал невероятные для того времени и такой мощности ДВС скорость – 150км/час.
Автомобиль NSU SpiderС 1963 года роторные двигатели стали использовать на серийных автомобилях для населения. Несколько лет их ставили на «Мерседесы», «Шевроле» и «Ситроены». Но двигатель показал ряд существенных недостатков. В результате производители вернулись к использованию классических, проверенных поршневых ДВС.
Настойчивее остальных оказались японские автопроизводители. Они использовали роторные ДВС на некоторых моделях «Мазда». Устранялись слабые места, увеличивался моторесурс до капремонта, снижалось потребление топлива. Однако по ряду причин и японцы вернулись к классическим ДВС . Последняя Мазда RX Spirit R с роторным двигателем сошла с конвейера в 2012 году.
В СССР первый роторный двигатель отечественного производства ставился в 1974 году на легендарную «копейку» – ВАЗ 2101.
Для его создания было организовано специальное конструкторское бюро. Прообразом служил двигатель Ванкеля. Было изготовлено около 50 опытных образцов с маркировкой ВАЗ 311. ВАЗы с ними не продавались населению, а поступили в распоряжение сотрудников ГАИ и КГБ в качестве служебных машин.
Поначалу «копейки» с этим силовым агрегатом вызывали восхищение своей мощью, динамикой разгона, низким шумом и плавностью хода. Но уже через год на ходу осталась только одна машина. Двигатели остальных вышли из строя. Основной причиной поломок стала ненадежность уплотнений, обеспечивающих герметизацию камер сгорания во время вспышки топлива.
Работы над отечественным роторным ДВС продолжались, и были созданы мощные двухсекционные ВАЗ 411 и 413 мощностью 120 и 140 л.с. “Жигули” с этими двигателями снова попали на службу в силовые структуры.
Данное достижение советского автопрома не афишировалось. В народе лишь ходили слухи о том, что сотрудники КГБ ездят на скоростных авто с невероятными секретными двигателями.
Затем были разработаны роторные двигатели ВАЗ 414 и 415. Это были более совершенные универсальные агрегаты. Их можно было ставить как на вазовские «восьмерки» и «девятки», так и на не менее популярные в то время «Москвичи» и «Волги».
Последняя разработка ВАЗ 415 так и не была использована. Ее предшественник, ВАЗ 414 с 1992 года ставился на популярной модели авто ВАЗ 2109 («Спутник», «Самара»).
«Девятки» с этими двигателями обладали необычными характеристиками. Разгон до 100 км/ч за 8 секунд, возможность длительной работы на предельно высоких оборотах. ВАЗ 414 потреблял меньше топлива (14-15 л на 100 км), чем предыдущие роторные ДВС (18-20 л на 100 км). Но все равно больше, чем поршневой мотор.
Однако и на ВАЗе роторные ДВС не смогли конкурировать с традиционными, и вскоре их использование было прекращено.
Работы над усовершенствованием роторных ДВС ведутся в мотоциклетной отрасли. В начале 1980-ых был создан мотоцикл Norton с двигателем Ванкеля, который показал невероятные результаты. Сегодня компания выпускает байки с таким двигателем объемом 588 куб.см. Ведутся работы над новым мотором с объемом 700 куб.см.
Автомобилей в такими двигателями сегодня не выпускают. Не исключено, что автопроизводители могут вести конструкторские работы в этом направлении без афиширования, втайне от конкурентов.
Устройство и принцип работы роторного двигателя
Принцип работы и устройство роторного ДВС одновременно схож с работой обычного поршневого двигателя и электродвигателя. Так же, как поршневой ДВС роторный вариант имеет камеры сгорания, системы впрыска топлива, выхлопа и зажигания. Сходство конструкции с электродвигателем в том, что ротор получает энергию при вращении внутри корпуса. (Кроме роторного ДВС с возвратно-поступательным движением вала).
Электродвигатель получает кинетическую энергию за счет перемещения электромагнитного поля. Роторный ДВС – за счет воспламенения топливно-воздушной смеси и резкого роста давления в камерах сгорания, так же, как и поршневые ДВС.
На сегодня известны 5 типов роторных моторов:
- С возвратно-поступательным движением вала. В таких типах ДВС ротор и вал не делают полных оборотов вокруг оси.
- Классический двигатель Ванкеля с планетарным вращением вала.
- Двигатели, в которых камеры сгорания расположены по спирали.
- Двигатели с равномерным вращением вала с камерами сгорания, расположенными по спирали без уплотнительных элементов.
- Двигатели с пульсирующим вращением.
Как и поршневые ДВС, роторные варианты имеют 4 рабочих такта:
- Впрыск топливно-воздушной смеси.
- Сжатие смеси.
- Воспламенение.
- Выпуск.
В обычных поршневых двигателях впрыск топлива и герметичность камеры сгорания обеспечиваются работой системы клапанов и поршневыми кольцами. В разных типах роторных ДВС последовательность тактов обеспечивается по-разному. В одних уменьшается объем камеры сгорания и обеспечивается сжатие смеси за счет перекрытия камеры вершиной ротора. В других – за счет уплотнений с механическим приводом. Но принцип работы един для всех типов.
- Воспламенение топливной смеси многократно повышает давление в камере сгорания.
- Давление дает кинетический импульс плоскости ротора и поворачивает его.
- Ротор передает крутящий момент через вал и зубчатую шестерню далее к механизмам авто. Плоскость ротора доходит до окна выхлопа, окно открывается и в него сбрасываются отработанные газы.
- Цикл повторяется.
Преимущества и недостатки
Роторный двигатель имеет набор больших преимуществ перед традиционным поршневым.
Главное преимущество – простота конструкции. Из-за отсутствия поршневой и кривошипно-шатунной группы узлов роторный двигатель почти в два раза легче и компактнее обычного. Легкий вес позволяет равномерно распределить нагрузку по всей базе автомобиля. Это улучшает управляемость, повышает динамические показатели автомобиля.
- Компактность позволяет увеличить размер салона.
- Ротор вращается плавно, без вибраций от взрыва топливной смеси в каждом цилиндре, равномерно выдает мощность.
- При том же объеме камер сгорания роторный двигатель значительно мощнее.
- Простота конструкции и минимум деталей облегчают ремонт.
Поэтому кажется, что весь мировой автопром давно и полностью должен был отказаться от поршневых двигателей в пользу роторных. Но этого не произошло. Следовательно, роторный вариант имеет ряд существенных недостатков, которые на сегодняшний день перевешивает все его плюсы. Недостатки в следующем:
- Роторный двигатель потребляет намного больше топлива. Это крупный минус в наше время, когда каждый автопроизводитель стремится сделать свое авто как можно более экономичным.
- Повышен расход масла – 0,5 литра на 1 тыс. км пробега. Долив масла требуется каждые 4-5 тыс. км. Отсутствие масла приводит к мгновенному выходу ДВС из строя.
- Производство ротора и криволинейных камер сгорания требуют высочайшей технологической точности на дорогом сверхточном оборудовании. Это повышает стоимость двигателя.
- Особенность линзовидных камер сгорания в том, что они поглощают больше тепла при работе. В итоге двигатель склонен к перегреву, закипанию охлаждающей жидкости в системе охлаждения, что мешает в эксплуатации авто и приводит к ускоренному выходу из строя деталей двигателя.
- Роторный двигатель имеет своё слабое место. Уплотнители, обеспечивающие герметичность камеры сгорания в момент воспламенения топливной смеси, не могут долго выдерживать нагрузки и выходят из строя. В итоге моторесурс самого совершенного роторного двигателя без ремонта не превышает 100 – 150 тыс. км пробега авто.
Кроме экономических и технических недостатков, роторный ДВС просто непривычен для водителей и механиков. Автомобиль с ним едет по-другому. Ввиду малой массы двигателя, у него нет запаса инерционной энергии. При малейшем сбросе педали газа машина быстро теряет скорость, что хорошо при торможении, но неудобно при движении. Приходится чаще переключать передачи. Таким двигателем нельзя тормозить, заглушенный двигатель даже на первой передаче легко проворачивается. Некоторым просто не нравится звук работающего роторного двигателя.
Возможно, у этого двигателя есть большое будущее. Поршневой мотор прошел долгий путь эволюции. Коленчатые валы и поршневые системы начали создаваться ещё на паровых двигателях.
У роторного варианта не было такой длительной эволюции и массовости производства, поэтому он имеет недоработки и слабые места. Важно то, что роторный двигатель может эффективно работать на газовом топливе, в том числе на водороде. Это может открыть ему большие перспективы в будущем.
Двигатель Ванкеля принцип работы
Единственная на данный момент выпускаемая в промышленном масштабе модель мотора роторного типа — это двигатель Ванкеля. Его относят роторным разновидностям движков, имеющим планетарное круговое движение основного рабочего элемента. Благодаря такой конструктивной компоновке, решение может похвастаться предельно простым техническим устройством, но не характеризуется оптимальностью в способах организации рабочего процесса и потому обладает своими неотъемлемыми и серьезными недостатками.
Двигатель Ванкеля роторный представлен во множестве вариаций, но, по сути, они различны между собой разве что численностью роторных граней и соответствующей формой внутренних поверхностей корпуса.
В общих чертах рассмотрим конструктивные особенности данного решения и углубимся немного в историю его создания и область использования.
История решений такого типа стартует в 1943 году. Именно тогда изобретателем Майларом была предложена первая аналогичная схема. После спустя некоторое время было подано еще ряд патентов на движки такой схемы. Также и разработчиком немецкой фирмы NSU. Но основным минусом, от которого страдал роторно поршневой двигатель Ванкеля, была система из уплотнений, расположенная между ребер на стыках соседствующих граней элемента треугольного типа и поверхностями неподвижных корпусных частей. Для решения столь трудной задачи подключился Феликс Ванкель, специализирующийся на уплотнениях. После, за счет своей устремленности и инженерному складу ума он возглавил разрабатывающую группу. И уже к 57-у году в недрах немецкой лаборатории был собран первый вариант, оснащенный основным вращающимся элементом треугольного типа и рабочей капсульной камерой, где вращательный элемент был намертво закреплен, в то время как вращение осуществлялось корпусом.
Куда более практичная вариация характеризовалась неподвижной рабочей камерой, в которой осуществлялось вращение треугольника. Такой вариант дебютировал годом позднее. К ноябрю 59-го года прошлого столетия фирмой были объявлены работы по созданию функционального решения роторного типа. За кратчайшие сроки множеством компаний по всему миру была приобретена лицензия на эту разработку, и из сотни фирм, около трети были из Японии.
Решение оказалось довольно компактным, мощным, с малым числом деталей. Европейские салоны пополнились машинами с роторными вариациями движков, но, увы, они обладали малым вращающим ресурсом, стремительным потреблением топлива и токсичным выхлопом.
Из-за нефтяного кризиса семидесятых попытки улучшить разработку до нужного уровня были свернуты. Лишь японской Маздой все также продолжались работы в этой области. Также трудился и ВАЗ, поскольку топливо в стране был очень дешевым, а мощные, хотя и с низким ресурсом, моторы были нужны силовым министерствам.
Но спустя тридцать лет ВАЗ закрыл производство и только Мазда до сих пор серийно запускает транспорт с моторами роторного типа. На данный момент выпускается лишь одна модель с таким решением – это Мазда RX-8.
После небольшого экскурса в историю стоит подробно остановиться на достоинствах и недостатках.
Плюсы роторного двигателя
Высокая мощность, почти вдвое превышающая показатели поршневых вариаций с четырьмя тактами. Массы неравномерно движущихся элементов в нем сравнительно ниже, чем в случае поршневых вариаций, и амплитуда движения значительно ниже. Это возможно из-за того, что в поршневых решениях происходят возвратно-поступательные движения, в то время как в рассматриваемом типе применяются планетарной схемы.
На большую мощность влияет и то, что она выдается в течение троих четвертей при каждом обороте вала. Для сравнения, одноцилиндровый поршневой мотор даёт мощность лишь на протяжении четверти каждого из оборотов. Потому за единицу объема камеры сжигания берется куда больше мощности.
При объёмах камеры в тысячу триста сантиметров, у RX-8 в плане мощности, достигается показатель двести пятьдесят лошадиных сил. У предшественника, а именно у RX-7, с аналогичным объемом, но с турбиной было триста пятьдесят лошадиных сил. Потому особыми чертами автомобиля становится отличная динамика: при низких передачах можно без лишних нагрузок на мотор разогнать транспортное средство до сотни на больших оборотах движка.
Рассматриваемый тип движка куда проще уравновешивается механически и избавляется от вибрации, что способствует повышению комфортности лёгкого транспортного средства;
По части размеров рассматриваемый тип движка в полтора-два раза меньше по сравнению с равными по мощности поршневыми моторами. Число деталей меньше примерно на сорок процентов.
Недостатки двигателя
Небольшая длительность рабочего хода роторных граней. Хоть данный показатель нельзя в чистую сравнивать с другими вариантами из-за разных типов хода поршней и вращающегося элемента, у рассматриваемой разновидности данный показатель примерно на 20% меньше. Тут имеется один существенный нюанс — у поршневых решений происходит линейное увеличение объемов, которое аналогично направлению расстояния от ВМТ до НМТ. Но вот в случае рассматриваемого типа агрегатов данное действие происходит сложнее и лишь отрезок траектории передвижения оказывается непосредственно линией хода.
Сложность формы камеры горения. У данной камеры серповидная форма и солидная область, где газов контактируют со стенами и ротором. Потому крупная тепловая доля приходится на нагрев элементов движка, а это уменьшает коэффициент полезного действия тепла, но при этом возрастает нагрев движка. Также такие формы камеры приводят к ухудшенному смесеобразованию и замедленному горению рабочих смесей. Потому на движке RX-8 ставят две зажигательные свечи на одну роторную секцию. Такие свойства негативно влияют и на термодинамический коэффициент полезного действия.
Малый вращательный момент. Дабы снималось вращение с работающего ротора, вращательный центр которого непрерывным образом выполняет вращение планетарного типа, в данном моторе применяют на основном валу диски с цилиндровым расположением. Проще говоря — это все является элементами преобразователя. То есть, решение рассматриваемого типа так и не смогло в полной мере избавиться от основного минуса поршневых вариаций, а именно КШМ.
Хоть он и являет собой облегченный вариант, но основные минусы этого механизма: пульсация вращающего момента, малые размеры плеча основного элемента также присутствуют и в рассматриваемом типе.
Именно потому вариация с одной секцией не эффективен, и их нужно увеличивать до двух или трех секций, с целью получения приемлемых характеристик работы, еще рекомендуется устанавливать на вале и маховое колесо.
Кроме присутствия в движке рассматриваемого типа механизма преобразователя, на недостаточный для такого мотора вращающий момент может повлиять и тот нюанс, что кинематические схемы в таких решениях устроены слишком мало рационально в плане восприятия поверхностью вращающегося элемента давления рабочих расширительных масс. Потому только определенная часть давления, а это порядка одной трети – пере компилируется в рабочее вращение элемента, тем самым создавая вращающий момент.
Наличие вибраций внутри корпуса. Проблема в том, что рассматриваемый в статье тип систем подразумевает неравномерное по массе движение. То есть во время вращения массовый центр агрегата выполняет непрерывное передвижение вращательного типа вокруг массового центра, а радиус этого движения соответствует цилиндровому плечу основного моторного вала. Потому на движковый корпус внутри влияет вращающийся постоянным образом силовой вектор, соответствующий силе центробежного типа, появляющейся на находящемся во вращении элементе. То есть он в процессе вращения на также находящемся в движении цилиндрическому валу характеризуется неизбежными и выраженными элементами движения колебательного типа.
Что и является причиной неизбежных вибраций.
Низкая устойчивость к износу в торце уплотнений радиального типа по углам вращающегося треугольника. Поскольку к ним поступает существенная нагрузка радиального типа, свойственная из-за того, что таков двигатель Ванкеля принцип работы.
Высокая вероятность прорыва газовых масс с высоким давлением из зоны одного такта работы в другой такт. Причина кроется в том, что роторный ребровой контакт уплотнителя и стенок камеры сжигания выполняется по единой линии небольшой толщины. Также имеется вероятность прорыва по гнездам, в которые устанавливают свечи, в момент прохода ребра основного вращающегося элемента.
Сложность смазочной системы вращающегося элемента. Как пример, в уже ранее упомянутой модели японского производителя особыми форсунками впрыскивается масло в камеры сжигания, дабы трущиеся в процессе вращения о стенки камеры ребер смазывались. За счет этого усиливается выхлопная токсичность и параллельно с этим повышает необходимость движка в качественном масле.
Также, во время высоких оборотов повышаются запросы к смазке поверхности цилиндрического типа цилиндрического элемента основного вала, вокруг которого осуществляется вращение, и которое занято снятием главного усилия с вращающегося элемента, также переводя во вращательное движение вала. Из-за этих двух технических трудностей, разрешить которые довольно проблематично, проявлялась недостаточная смазка в случае высоких оборотов наиболее загруженных трением элементов движка, а значит, резким образом уменьшался движущий ресурс движка. Из-за этого недостаточного решения выходит очень малый ресурс движков рассматриваемого типа, которые были выпущены отечественным АвтоВАЗом.
Большая требовательность к точности выполнения элементов со сложной формой делают таков движок трудным в производстве. Для его производства требуется высокоточное и дорогое оборудование — станки, способные выполнить рабочую камеру с криволинейной поверхностью.
Если говорить о вращающемся элементе, то у него так же имеется форма треугольника, у которого выпуклые поверхности.
Сделав выводы из всего вышеописанного можно отметить, что рассматриваемый тип обладает не только выраженными преимуществами, но и большим количеством фактически непреодолимых минусов, не позволяющих ему победить поршневые вариации. Однако такая перспектива всерьез обсуждалось сорок или пятьдесят лет назад, и аналитические обзоры пестрили мнениями, что уже к началу девяностых годов прошлого столетия роторные решения разнообразных типов будут доминировать на автомобильном рынке.
Однако, даже с учётом негативных сторон и технических проблем, такое решение смогло неплохо себя зарекомендовать в техническом плане и даже вырвать свою долю на рынке, поскольку минусы конкурентного решения – поршневого мотора с КШМ еще серьёзнее сказываются на работе. И это с учётом того, что поршневой движок долгое время пытались улучшить.
Самостоятельное изготовление двигателя
Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.
Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».
Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.
В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.
Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.
Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.
Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.
Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.
Если статья была Вам полезна, можете поделиться материалом в социальных сетях:
Двигатель Ванкеля: особенности и характеристики
Паровые машины, как и традиционные ДВС отличаются общим недостатком — возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.
Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.
Немного истории
В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.
После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.
Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.
К 80-м годам 20 века роторные двигатели Ванкеля исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.
Есть множество разновидностей роторных агрегатов. Единственное их отличие — поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.
Достоинства
Двигатель Ванкеля с момента создания имел множество выгодных преимуществ перед поршневыми моторами. Агрегат постоянно дорабатывался,что позволило повысить его экономичность и производительность.
Среди преимуществ”Ванкеля” выступают:
- Небольшие габариты и вес. «Ванкель» практически в 2 раза меньшепоршневого ДВС, что положительно сказывается на управляемости машины, способствует оптимальному монтажукоробки передач, позволяет сделать салон намного просторнее.
- В сравнении с двухтактным мотором, двигатель Ванкеля имеет гораздо меньше деталей. Это более выгодно с точки зрения ремонта.
- Вдвое большая мощность, чем у стандартных ДВС.
- Большая плавность работы — отсутствие поступательно-возвратных движений благоприятно сказывается на комфорте езды.
- Возможность заправки низкооктановым бензином.
Все элементы мотора вращаются в одну сторону. Это улучшает внутренний баланс агрегата и снижает вибрации. «Ванкель» выдает мощность равномерно и плавно. За время пока ротор оборачивается 1 раз, выходной вал совершает 3 оборота. Каждое сгорание осуществляется за 90 фазу вращение ротора.
Это говорит о том, что роторный двигатель с 1 ротором способен выдавать мощностьза ¾ каждого поворота выходного вала. Двигатель с 1 цилиндром может выдавать мощность лишь за ¼ каждого витка выходного вала.
Недостатки
К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.
Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС —роторные уплотнениярегулярно изнашиваются.
Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.
Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.
Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности — установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.
Как работает
Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.
Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.
Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки — они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком — на нем и вращается ротор.
Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.
Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор — так возникает крутящий момент.
Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.
Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.
При одном обороте ротора двигатель совершает 3 цикла — это делает ненужным применение уравновешивающих устройств.
В рабочем процессе есть слабые звенья. Первое — повышенная нагрузка на уплотнения, а второе — избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент — если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.
Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.
Интересные факты
Не каждый автолюбитель знает, что Ванкель является одним из 5 подтипов в классификации роторных моторов.
Компактность, оборотистость, высокая производительность — не этого ли добиваются практически все производители мотоциклов? Однозначно, это так. Однако роторный мотор в мотомире таки не прижился. Все ставки делаются на классические поршневые двигатели.
Однако в истории производства мотоциклов существовало несколько исключений. К примеру, в 1974 году Hercules выпускает массовую серию Wankel, которые оборудованы двигателем KC-27. Это были роторные агрегаты, которые оснащались воздушным охлаждением. Двигатель имел объем294 куб. см. Мощность агрегатов составляла 25л.с. Для смазки агрегата, масло нужно было самостоятельно заливать в топливный бак.
В начале1980 роторный мотор использовали для оснащения мотоциклов Norton. Несмотря на то, что опытные прототипы таких двигателей появились еще в 1970-х.Инженеры Norton успешно внедрили РПД в спорт. К концу 80-х им не было равных.
Сегодня компания производит 588-кубовую модельдвумя роторами NRV588. Также инженерами Norton ведется разработка 700сс версии, которая называется NRV700. Она представляет собой мощный спортбайк, оснащенный инжекторным 170-сильным двигателем Ванкеля.
Как видно, эпоха роторных моторов еще не наступила. Поршневые системы так и остались лидирующими в сфере авто- и мотостроения. Обладатели байков с роторными двигателями могут образовать лишь небольшой круг фанатов Ванкеля. Возобновившийся интерес к «Ванкелю» компании Norton говорит о скором подъеме разработок и достижений в этой сфере.
Одной из причин, по которым двигатель не производится для оснащения автомобилей и мотоциклов — необходимость точного оборудования при его производстве. Малейший брак становится причиной выхода мотора из строя. Это пока не позволяет роторному агрегату заменить поршневой двигатель даже в узкихотраслях производства.
Роторно-поршневой двигатель в разрезе.
Ро́торно-поршнево́й дви́гатель внутреннего сгорания (РПД, двигатель Ва́нкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя. [1]
Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.
Конструкция
Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй — статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.
Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)
Роторно-поршневой двигатель
Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.
Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.
Преимущества, недостатки и их разрешение
Преимущества перед обычными бензиновыми двигателями
- низкий уровень вибраций. РПД полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров;
- главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного двигателя внутреннего сгорания.
- Малая удельная масса при высокой удельной мощности, причины:
- Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
- К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличии от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)
- меньшие в 1,5—2 раза габаритные размеры.
- меньшее на 35—40 % число деталей
За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель способен выдерживать бо́льшие обороты с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.
Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.
В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.
Важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.
Проблема быстрого износа уплотнителей на высокой скорости вращения была разрешена применением высоколегированной стали.
При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.
Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.
Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования — станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.
Применение
NSU Ro80.
Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем — немецкий спорткар NSU Wankelspider.
Первый массовый (37,204 экземпляра) — немецкий седан бизнес-класса NSU Ro80. Автомобиль имел достаточно инноваций и помимо двигателя — в частности, кузов с рекордно-низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2.
К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford.
Citroën также экспериментировал с РПД — проект Citroën M35.
После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмой ВАЗ, в конечном счёте взявшим за основу конструкцию двигателя
Современные двигатели
Инженерам фирмы Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо́льшую мощность, меньше нагревается.
Автомобили марки [2] могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД двигателю со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня.
Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн
Авиационные двигатели
В начале 50-х годов была создана серия авиадвигателей ВП-760, ВП-1300, ВП-2650 — пятилучевых двухтактных звёзд мощностью от 40 до 130 л. с. и весом от 25 до 100 кг авиационного инженера В.Полякова, созданных для лёгкой авиационной техники и прошедших успешные испытания в небольшой серии в ДОСААФ. [3]
Сноски
- ↑ Иван Пятов. РПД изнутри и снаружи, Журнал Двигатель, № 5-6 (11-12) сентябрь-декабрь 2000
- ↑ первые буквы от названия «Renesis», производным от слов (англ. Rotary Engine:роторный двигатель и Genesis:процесс становления, название говорящее о появлении нового класса двигателей)
- ↑ альманах АэроМастер, №1/98г, Новосибирск.
Литература
- Роторно-поршневой двигатель // Большая советская энциклопедия
Ссылки
РПД СССР/России
Авиационные РПД
См. также
Wikimedia Foundation. 2010.
CAROLD.RU — Сайт о ретро технике и авто
Роторный двигатель постоянно привлекает к себе внимание. Конструкция – проще не придумаешь, характеристики автомобиля с ротором под капотом такие, словно там два двигателя! Так почему же мы не ездим повсеместно на роторных машинах? Ответ на этот вопрос заключается в истории создания и применения роторного двигателя, запутанной, полной подъёмов и падений…
Создатель – Феликс Ванкель
Роторный двигатель
Имеет хождение старая байка, что Ванкель придумал чудо-двигатель в 1919 году. В неё всегда верилось с трудом: как мог 17-летний парень, пусть и талантливый, такое сотворить? Для этого надо пройти обучение где-нибудь в университете, научиться конструировать и рисовать… Гораздо вероятнее сведения о первых эскизах двигателя от 1924 года, которые сделал Ванкель, окончив высшую школу и поступив на работу в издательство технической литературы. Перелопачивая горы макулатуры, можно либо навсегда потерять к технике интерес, либо начать конструировать самому. Видимо, у Феликса душа лежала именно к конструированию.
Он открыл в городе Гейдельберге собственную мастерскую, а в 1927 году появились на свет чертежи «машины с вращающимися поршнями» (на немецком языке сокращенно DKM). Первый патент DRP 507584 Феликс Ванкель получил в 1929 году, а в 1934 году подал заявку на двигатель DKM. Правда, патент он получил через два года. Тогда же, в 1936 году, Ванкель обосновывается в Линдау, где размещает свою лабораторию.
Феликс Ванкель
Потом перспективного конструктора заметила власть, и работы над DKM пришлось оставить. Ванкель работал на BMW, Daimler и DVL, основные авиамоторостроительные предприятия фашистской Германии. Так что не удивительно, что до наступления 1946 года Ванкелю пришлось сидеть в тюрьме, как пособнику режима. Лабораторию в Линдау вывезли французы, и Феликс попросту остался ни с чем.
Лишь в 1951 году Ванкель устраивается на работу в мотоциклетную фирму – уже широко известный тогда NSU. Восстанавливая лабораторию, он заинтересовал Вальтера Фройде, конструктора гоночных мотоциклов своими конструкциями. Вместе Ванкель и Фройде продавили проект в руководстве, и разработка двигателя резко ускорилась. 1 февраля 1957 года заработал первый роторный двигатель DKM-54. Он работал на метаноле, но к июню проработавший 100 часов на стенде двигатель перевели на бензин.
Принципы работы роторного двигателя
Цикл двигателя Ванкеля
Но тут Фройде предложил новую концепцию роторного двигателя! В двигателе Ванкеля (DKM) ротор вращался вокруг неподвижного вала вместе с камерой сгорания, чем обеспечивалось отсутствие вибраций. Вальтер решил камеру сгорания зафиксировать, а ротор пусть будет приводить в движение вал, то есть использовать принцип двойственности вращения для роторного двигателя. Такой тип роторного двигателя получил обозначение KKM.
Принцип двойственности вращения сам Ванкель запатентовал в 1954, но он всё-таки использовал принцип DKM. Надо сказать, что Ванкелю идея такой инверсии не нравилась, но он ничего не мог поделать – у двигателя его любимого типа DKM обслуживание было трудоёмким, чтобы сменить свечи, требовалась разборка мотора. Так что двигатель типа KKM имел гораздо больше перспектив. Его первый образец закрутился 7 июля 1958 года (правда, на нем ещё в роторе стояли свечи, как на DKM). Впоследствии свечи перенесли на корпус двигателя, и он обрёл свой облик, принципиально не менявшийся до наших дней. Теперь по этой схеме устроены все роторные двигатели. Иногда их называют «ванкелями», в честь разработчика.
В таком двигателе роль поршня играет сам ротор. Цилиндром служит статор, имеющий форму эпитрохоиды, и когда уплотнения ротора двигаются по поверхности статора, образуются камеры, в которых происходит процесс сгорания топлива. За один оборот ротора такой процесс происходит трижды, а благодаря сочетанию форм ротора и статора число тактов такое же, как у обычного ДВС: впуск, сжатие, рабочий ход и выпуск. Анимацию работы роторного двигателя можно посмотреть здесь.
У роторного двигателя нет системы газораспределения – за газораспределительный механизм работает ротор. Он сам открывает и закрывает окна в нужный момент. Еще ему не нужны балансирные валы, двухсекционный двигатель по уровню вибраций можно сравнить с многоцилиндровыми ДВС. Так что идея роторного двигателя в конце пятидесятых казалась ступенькой для автомобилестроения в светлое будущее.
В серию!
NSU Spider
Послевоенная Германия начинала потихоньку богатеть, и автомобили расходились всё лучше и лучше. Фирма NSU работала на этом фронте, и ключевым моментом её модельной гаммы должны были быть двигатели Ванкеля. Уже с 1958 года шли работы по созданию автомобиля с роторным двигателем, и в 1960 году он был показан публике на конференции немецких конструкторов в Мюнхене. Машина под названием NSU Spider оснащалась двигателем Ванкеля, развивавшим 54 л.с. Многие усмехнутся, но для маленького спайдера это было в самый раз – он разгонялся до 150 км/ч. Spider производился с 1964 по 1967 год.
NSU Ro-80
Главным автомобилем, принёсшим известность Ванкелю, стал NSU Ro-80, представленный в 1967 году. Уже в его названии зашифрованы претензии на лидерство: «Ro» – это значит «роторный», а 80… Что-то вроде «автомобиль 80х годов». Машина установила новые правила экстерьера седанов: чистые линии, большая степень остекления, багажник выше капота… Влияние дизайна Ro-80 чувствуется в Audi 100. Благодаря малым размерам роторного двигателя переднюю часть машины удалось понизить и сузить, поэтому коэффициент аэродинамического сопротивления по сравнению с одноклассниками снизился на 25%. Оснащался седан двухсекционным двигателем Ванкеля рабочим объёмом 2 x 497,5 см3.
Двигатель развивал мощность 115 л.с., разгоняя новинку до 180 км/ч, а 100 км/ч с места достигались через 12,8 секунды. Успех был колоссальный. Ro80 тут же получил титул «Автомобиль 1967 года», роторный двигатель стал популярной темой на автовыставках. Множество автопроизводителей закупило лицензии на производство двигателей Ванкеля, но…
До серийного производства дело обычно не доходило. Тема оказалась не настолько проста, как казалась. И виной всему…
Врождённые недостатки
У перспективнейшей схемы есть серьёзные недостатки, справиться с которыми обойдётся дорого и трудно.
Камера сгорания у роторного двигателя вытянутой формы, словно серпик молодой луны. Естественно, тепловые потери на большей, чем в обычном цилиндре, площади приводят к высокой теплонагруженности двигателя и меньшему КПД. В такой камере сгорания и эффективного перемешивания рабочей смеси не происходит, а тогда – плохая экономичность и экологичность.
С точки зрения технолога, роторный двигатель далеко не подарок. В отличие от обычных поршневых двигателей, у которых процесс сгорания топлива происходит попеременно в разных цилиндрах, а в промежутках камера сгорания охлаждается на такте впуска рабочей смесью, роторный двигатель имеет только одну камеру сгорания, работающую постоянно. Поэтому ротор должен быть стойким к температурным изменениям, когда нагревшуюся поверхность начинает охлаждать рабочая смесь через такт.
Еще одна проблема – уплотнения. В поршневом ДВС кольца работают под одним и тем же рабочим углом. В роторном двигателе, когда ротор скользит углами по поверхности статора, уплотнениям приходится работать под разными углами. Естественно, трение приходится уменьшать, впрыскивая масло прямо в коллектор. Экологичность ещё больше страдает…
Ну и для заметки: роторный двигатель просто не может работать на солярке. Он не вынесет таких нагрузок, какие свойственны дизелю.
Машины с двигателем Ванкеля
NSU Ro-80
С самого начала работ над роторным двигателем фирма NSU не делала из этого тайны. Любая автофирма могла купить лицензию на производство нового мотора, и покупатели сразу нашлись. Daimler Benz, GM, Mazda, Citroen, Toyota… Многие из них хотели получить дешёвый и мощный двигатель, но, сталкиваясь с проблемами надёжности и эксплуатации, прекращали разработку. Да и сама NSU погорела именно на эксплуатации. Неопытные покупатели просто-напросто палили двигатели, перекручивая их сверх всяких норм. Надёжность двигателя в таких условиях была слишком низкой. А тут еще топливные кризисы! Расход топлива для Ro-80 составлял от 15 до 17,5 литров на 100 км…
Финансовые проблемы загнали NSU в яму, откуда ей не суждено было выбраться: в 1969 году её со всеми потрохами поглотил Volkswagen. Этим закончилось серийное производство роторных автомобилей в Германии.
Но опытные машины были. Mercedes Benz работал над суперкаром с роторным двигателем. Опытный образец появился в 1969 году и оснащался трёхсекционным роторным двигателем с объёмом каждой секции в 600 см3 и мощностью в 280 лошадиных сил. Лёгкий автомобиль с пластмассовым кузовом разгонялся до 257,5 км/ч, а до «сотни» за пять секунд.
Mercedes C111
Через год на Женевском Моторшоу публике представили С111 второго поколения. Автомобиль имел сверхобтекаемый по тем временам кузов, его Сх был в пределах 0,325. Двигатель получил ещё одну секцию и теперь развивал 350 л.с. Водитель такого автомобиля мог ездить на скорости 300 км/ч, а благодаря переработанному и укреплённому каркасу кузова он получал удовольствие от поведения машины в поворотах. Разгонялся второй образец до 100 км/ч ещё быстрее – за 4,8 секунды оранжевый клиновидный автомобиль достигал магической отметки и продолжал набирать скорость.
Поклонники «Gulfwing» уже выстраивались в очередь за новым «Крылом», но Mercedes не собирался тогда производить римейки своей легенды. Эти машины были нужны для обкатки нового мотора, но даже MB так и не смог справиться с основной проблемой роторного двигателя – его прожорливость была колоссальной. Так нефтяные кризисы погубили германское направление разработки «ванкелей».
Chevrolet Corvette
За океаном также присматривались к двигателю Ванкеля. Chevrolet получил лицензию на производство роторных двигателей и в 1970 году принялся за разработку Корветов с двух- и четырёхсекционными двигателями. Фиберглассовая модель с двигателем в базе получила одобрение президента GM Эда Коула в июне 1971 года. Спустя год, в июне 1972 года, Corvette со стальным кузовом и с двухсекционным роторным двигателем был представлен правлению GM, и получил обозначение XP-987GT.
К январю 1973 года был собран и Корвет с двигателем с четырьмя секциями, в апреле он продувался в аэродинамической трубе в Калифорнии. Corvette с двухсекционным ротором мощностью 266 л.с. выставлен на обозрение публики 13 сентября 1973 года во Франкфурте, а его собрат с четырёхсекционным сердцем и мощностью 390 л.с. показался на Парижском салоне 4 октября того же года. Но 24 сентября 1974 года Эд Коул отложил разработку Corvette с двигателем Ванкеля из-за трудностей с выпуском.
Немецкую идею восприняли и в соседней Франции. Сотрудничать с NSU французы начали в 1964 году, образовав с немецким партнером компанию Comotor. В 1973 году Citroen завершил разработку роторного двигателя и в 1974 в производство пошел Citroen GS Birotor.
Citroen GS Birotor
Автомобиль оснащался двухсекционным роторным двигателем объёмом 2 х 498 см3, развивающим 107 лошадиных сил при 5500 об/мин. Рабочую смесь ванкелю поставляли два карбюратора Solex. Машины также оснащены полуавтоматом и гидравлической подвеской. Когда запущен двигатель, Birotor поднимается над землей (традиция Citroen) и выглядит при этом почти как полноприводник. Салон отделывался тканью и винилом, как дополнительное оснащение устанавливались радио, тонированные стёкла и люк в крыше.
С марта по август 1974 года завод покинули 750 Ситроенов с роторным двигателем. До конца 1974 года сделали еще 93 машины, а в 1975 только 31 GS Birotor съехал с конвейера. Всего, как не трудно подсчитать, было сделано 874 Citroen GS Birotor. В 1977 году завод отозвал роторные машины, чтобы их ликвидировать. Однако порядка 200 машин могли уцелеть, но большинство нигде не зарегистрированы. Вероятность обнаружить живой Birotor больше всего во Франции, а вообще они продавались в Швеции, Великобритании, Германии, Дании и Нидерландах.
Но самого верного и последовательного поклонника идея Ванкеля приобрела в далёкой Японии, где фирме Mazda позарез требовалась свежая идея, чтобы выделяться среди остальных. Тогда правительству самураев пришла в голову идея объединить весь автопром. Но от неё отказались, и правильно сделали!
Mazda Cosmo Sport
Первым автомобилем Mazda с роторным двигателем стало купе Mazda Cosmo Sport, первый образец которой был показан на Токийском автосалоне в 1964 году. В 1965 была произведена первая партия из 60 Космосов, но серийное производство началось только в 1967 году.
Космос серии 1 оснащался двухсекционным двигателем Ванкеля 10A 0810 объёмом 2 x 491 см3 с двумя карбюраторами Hitachi. Такая силовая установка развивала мощность в 110 л.с. и разгоняла немаленький автомобиль до 185 километров в час. Управлять машиной помогала 4-скоростная ручная коробка передач и передняя независимая подвеска. Производилась первая серия с мая 1967 года по июль 1968, сделано 343 машины.
С июля 1968 года производилась вторая серия Cosmo Sport. Машина получила двигатель 10A 0813 мощностью 128 лошадиных сил, пятискоростную коробку передач, более мощные тормоза и 15-дюймовые тормоза (на предыдущей серии стояли 14-дюймовые). Теперь Космос мог достичь скорости 120 миль в час (или 193 км/ч), а четырёхсотметровую дистанцию проехать при старте с места за 15,8 секунды. Внешне обновлённую модель можно было отличить по увеличившейся «пасти» и по чуть увеличенной базе. До июля 1972 года сделали 1176 машин, что относительно неплохо при ручной сборке и норме выпуска одна машина в день.
Тогда же, с 1968 по 1973 год производилась роторная модификация модели Familia. Двухдверное купе использовало шасси обычной Фамилии, но под капотом у нее жил двигатель Ванкеля мощностью 100 л.с. от Космоса. Меньшая по сравнению с Cosmo мощность двигателя 10А 0820 объясняется малыми размерами карбюратора. Для недорогой машины использовались недорогие материалы – в частности, алюминий заменялся чугуном. Но вес двигателя увеличился ненамного, на 20 кг, и достиг всего 122 кг. Familia R100 участвовала в гонках 24 часа Спа и Ле-Мана, где она проигрывала только 911-ым и BMW.
Mazda Luce R130
Третьей моделью стало заднеприводное купе Luce люкс-класса. Переднемоторная машина с дизайном от Джуджаро оснащалось двигателем модели 13А объёмом 2 x 655 см3, развивавшим 126 лошадиных сил. Четверть мили при разгоне с места Luce R130 мог проехать за 16,9 секунд. Эта машина не поставлялась на американский рынок. Производилась модель с 1969 по 1972 год.
В 70-х годах прошлого века двигатель Ванкеля ставился японцами практически на любую свою новую модель, от Capella до пикапа и микроавтобуса. Именно в это десятилетие родился бренд «RX», значащий для Мазды то же самое, что и «GTI» для Фольксвагена. Роторный двигатель обходил конкурентов по всем статьям, но неожиданные финансовые потери заставили руководство фирмы. В 1970 появилась смена Familia R100. Новая модель Mazda RX2 основывалась на шасси модели Capella с обычным поршневым двигателем. RX2 предлагалась покупателям с кузовами «седан» и «купе», представлявшими собой лишь модификации таких же версий модели Капелла, и отличаясь от них внешне лишь шильдиками. Основные изменения скрывались под капотом.
RX2 оснащалась двигателем модификации 12А, имеющим две секции общим объёмом 1146 кубических сантиметров. «Ванкель» развивал мощность 130 л.с., что для весящей 1050 кг машины означало хорошую динамику даже по сегодняшним меркам. Такая «горячесть» модели обеспечивало ей любовь поклонников. В 1974 году Mazda RX2 получила чуть улучшенный двигатель, то позволило ей продержаться в производстве до 1978 года.
С октября 1972 года Mazda производила большой автомобиль Luce Rotary, пришедший на замену Luce R130. Три кузова – купе, седан и универсал, ручная 4-ступенчатая коробка передач и 3-ступенчатый автомат производили впечатление. Автомобиль продавался с двигателем 12А, выдававшим 130 л.с., но на экспорт в Америку с 1974 года он поставлялся оснащённым мотором серии 13В и под новым названием RX-4. Этот роторный двигатель поглощал меньше топлива и соответствовал американским нормам по чистоте выхлопа.
13В выдавал мощность 110 л.с., что обеспечивало купе или седану снаряжённой массой около 1190 кг неплохую динамику. Универсал участвовал в тестах журнала Road&Truck в 1974 году и показал вполне сносные результаты, несмотря на массу, возросшую до 1330 кг. Разгоняясь до 60 миль в час за 11,7 секунд, он 400 метров преодолел за 18 секунд, показав в конце мерного отрезка 124,5 км/ч. Журнал отметил и возросшую экономичность модели, внеся её в десятку «Лучших Покупок в диапазоне цен 3500-6000$». Сама машина стоила 4250 долларов, но за опции в виде кондиционера (395$) или «автомата» (270$) приходилось доплачивать. Производилась модель ровно пять лет, претерпев в 1976 году обновление кузова.
Mazda Rotary Pickup
С 1974 года на американском и канадском авторынках стал продаваться первый и пока единственный роторный пикап. Mazda продавала его исключительно на заокеанском рынке, на внутреннем он не был представлен. От пикапов серии B и родственных им Ford Courier роторная модель отличалась внешним видом – увеличившимися бамперами, другими линиями, хромированной передней решёткой радиатора и круглыми задними фонарями.
Под капотом Rotary Pickup располагался знакомый уже мотор 13B, который придавал пикапу изрядную толику спортивности. Было изготовлено 15 000 машин, большинство из которых продано в 1974 году, перед энергетическим кризисом. Из-за кризиса продажи резко упали, автомобилей 1976 модельного года было сделано всего около 700. Mazda изменила дизайн для машин 1977 модельного года, обновила электронику, заменила коробку передач на 5-скоростную, даже удлинила кабину на 10 см для пущего комфорта, но всё было напрасно. В 1977 году модель была снята с производства.
Mazda Parkway Rotary 26
C июля 1974 производилась еще одна редчайшая модель Parkway Rotary 26 – единственный в мире автобус с роторным двигателем. Оснащён он был мотором модели 13B рабочим объёмом 2 x 654 см3, развивавшим уже 135 л.с. и обладавшим низким уровнем содержания вредных веществ в выхлопных газах. Управлялся этот силовой агрегат с помощью четырёхступенчатой ручной коробки передач. Немаленький автобус (габариты 6195 x 1980 x 2295 мм, снаряжённая масса 2835 кг) легко разгонялся до крейсерской скорости 120 км/ч.
Прозвище «двадцать шесть» Парквэй получил за вместимость – в стандартной комплектации DX он имел на борту 26 пассажирских мест, что было отражено и в его названии. Имелась и роскошная версия Super DX, вмещавшая только тринадцать человек. Модель отличалась низким уровнем вибраций и тишиной в салоне, что было обеспечено гладкостью работы роторного двигателя. По заказу Parkway можно было оснастить системой вентиляции. Производство завершено в 1976 году.
В 1975 году австралийское отделение Holden концерна Ford поставило своим японским коллегам машину представительского класса Premier для выпуска под брэндом Mazda. Производство машин было успешно освоено, но Holden не дал японцам двигателей, подходящих для машины весом 1575 кг, и они приспособили под капот большого седана Mazda RoadPacer роторный двигатель модели 13B. Поскольку он был мощнее, чем те моторы, что имелись у Холдена, то максимальная скорость достигла 166 км/ч, но вот крутящего момента ему явно не хватало. Разгон был очень слабым, а расход топлива и так не отличающегося плохим аппетитом мотора зашкалил за 26 литров бензина на 100 км. Первоначально планировавшийся как представительский, автомобиль попал в продажу во время топливного кризиса и успеха на рынке закономерно не получил. Сняли неудачливого RoadPacer’а с производства через три года.
Mazda RX-7
Последнее, третье поколение RX-7 было полнокровным японским спортивным автомобилем. Под капот ставился роторный двигатель модели 13B-REW, оснащавшийся двумя турбинами, стоящими друг за другом. Система работы двух турбин была разработана вместе с фирмой Хитачи и обкатана на модели Cosmo, продававшейся на внутреннем рынке. Первая турбина была маленькой и работать начинала на малых оборотах двигателя (примерно с 1800 об/мин), чтобы на них не возникала «турбояма». Вторая турбина была побольше и включалась в работу с 4000 об/мин. Их совместная работа была отлажена настолько, что крутящего момента «хватало» всегда.
Платформа FD была оценена как разработка мирового класса. Длительная работа над улучшением ходовых качеств, отточенное шасси, низкий центр тяжести и равномерное распределение веса по осям привели к появлению очень серьёзного «драйверского» автомобиля.
Русская страница этой истории
ВАЗ 21018
Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам: некий умелец собрал и установил на свой мотоцикл в качестве эксперимента двигатель Ванкеля. Промышленное производство началось в 1974 году на ВАЗе с создания Специального конструкторского бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. Доработка конструкции тянулась почти шесть лет. И на выставке НТТМ-82 ВАЗ наконец-то представил свой первый серийный автомобиль с роторным двигателем под капотом – Ваз-21018. Машина практически по конструкции не отличалась от своих обычных «поршневых» собратьев, но под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 машинах опытной серии при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.
Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы начали спасать тонущий проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.
ВАЗ 21079
А затем СКБ был увлечён новой темой – роторные двигатели стали пробовать применить в малой авиации. Безрезультатное отвлечение от темы привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд.
К сожалению, одно из самых перспективных направлений в нашем автомобилестроении было свёрнуто.
Дальнейшие перспективы роторных двигателей
Сейчас серийно выпускается только Mazda RX-8. У неё потрясающие управляемость и динамика: максимальная скорость 235 км/ч и разгон до сотни за 6,4 секунды. Двигатель нового поколения Renesis выдаёт 250 л.с. при 9000 об/мин без турбонаддува с двух секций общим объёмом 1598 см3, и расходует на удивление мало бензина.
Но для новой RX-8 свойственны некоторые отличия от легендарных машин прошлого. Экологические требования привели к отказу от применения турбонаддува, который придавал прежним моторам невероятную мощь. Кроме того, японские тюнингеры разгоняли их до 1000 л.с., повышая давление наддува, а с новым мотором этого не выйдет. Он форсирован по-другому, методом повышения максимальных оборотов. Видимо, это плата за существование двигателя Ванкеля в новом, странном и непонятном, но экологичном мире.
История не закончена…
В настоящее время разработку роторных двигателей официально ведёт только Mazda, накопившая в этой области гигантский опыт. Именно ей принадлежит идея заставить роторный двигатель работать на водородном топливе, таким образом, исключая выбросы вообще. Правда, роторный двигатель Renesis на водороде работает с неохотой, выдавая всего 109 лошадей. Но для упорных японцев это не проблема. Пока RX-8 Hydrogene возит на борту два бака – один для бензина, другой для водорода. На трассе Мазда ездит на бензине, а в городе на водороде – переключение между видами топлива происходит с водительского места простым нажатием кнопки.
Так что история роторного двигателя на этом не заканчивается. Возможно, в будущем к двигателю, работающему на чистом водороде, японцы приспособят турбонаддув…
Вместо поскриптума
Недавно на крупном автосайте обнаружено сообщение о разработке АвтоВАЗом нового роторного двигателя. Может быть, именно это придаст брэнду «ВАЗ» узнаваемость, а его моделям динамичность?
9 преимуществ и 4 недостатка
Содержание статьи
Преимущества перед другими конструкциями
В отличие от более распространённых поршневых конструкций, двигатель Ванкеля (Wankel) обеспечивает преимущества — простоту, плавность, компактность, высокие обороты в минуту и большое отношение мощности к весу. Это связано прежде всего с тем, что производятся три импульса мощности на один оборот ротора Ванкеля по сравнению с одним оборотом в двухтактном поршневом двигателе и по одному на два оборота в четырёхтактном двигателе.
РПД обычно называют вращающимся двигателем. Хотя это название также относится и к другим конструкциям, прежде всего к авиационным двигателям с их цилиндрами, расположенными вокруг коленчатого вала.
Четырёхступенчатый цикл впуска, сжатия, зажигания и выхлопа происходит в каждый оборот на каждом из трёх наконечников ротора, перемещающихся внутри овально — подобранного корпуса с перфорацией, что позволяет использовать в три раза больше импульсов на один оборот ротора. Ротор похож по форме на треугольник Реуле, а стороны его более плоские.
Конструктивные особенности двигателя Ванкеля
Теоретическая форма ротора РПД Ванкеля между фиксированными углами является итогом уменьшения объёма геометрической камеры сгорания и увеличения степени сжатия. Симметричная кривая, соединяющая две произвольные вершины ротора, максимальна в направлении внутренней формы корпуса.
Центральный приводной вал, называемый «эксцентриковый» или «E-вал», проходит через центр ротора и поддерживается неподвижными подшипниками. Ролики движутся на эксцентриках (аналогично шатунам), встроенным в эксцентриковый вал (аналогично коленчатому). Роторы вращаются вокруг эксцентриков и совершают орбитальные обороты вокруг эксцентрикового вала.
Вращательное движение каждого ротора на собственной оси вызвано и регулируется парой синхронизирующих передач. Фиксированная шестерня, установленная на одной стороне корпуса ротора, входит в кольцевую шестерню, прикреплённую к ротору, и обеспечивает то, что ротор движется ровно на 1/3 оборота для каждого оборота эксцентрикового вала. Выходная мощность двигателя не передаётся через синхронизаторы. Сила давления газа на роторе (в первом приближении) идёт прямо в центр эксцентриковой части выходного вала.
РПД Ванкеля фактически представляет собой систему прогрессивных полостей переменного объёма. Таким образом, на корпусе имеется три полости, все повторяющие один и тот же цикл. Когда ротор вращается орбитально, каждая его сторона приближается, а затем удаляется от стенки корпуса, сжимая и расширяя камеру сгорания, подобно ходу поршня в двигателе. Вектор мощности ступени сгорания проходит через центр смещённой лопасти.
Двигатели Wankel, как правило, способны достичь гораздо более высоких оборотов, чем те, что с аналогичной выходной мощностью. Это связано с гладкостью, присущей круговому движению, и отсутствием сильно напряжённых частей, таких, как коленчатые и распределительные валы, или шатуны. Эксцентриковые валы не имеют ориентированных по напряжению контуров коленчатых.
Проблемы устройства и их устранение
Феликсу Ванкелю удалось преодолеть большинство проблем, из-за которых предыдущие роторные устройства терпели неудачу:
- У вращающихся РПД есть проблема, не встречающаяся в четырёхтактных устройствах с поршнями, в которых корпус блока имеет впуск, сжатие, сгорание и выхлопные газы, проходящие в фиксированных местах вокруг корпуса. Использование тепловых труб в воздушном охлаждении роторного двигателя Ванкеля было предложено Университетом Флориды для преодоления неравномерного нагрева блока корпуса. Предварительный нагрев некоторых корпусных секций выхлопными газами улучшил производительность и экономию топлива, а также уменьшил износ и выбросы.
- Проблемы также возникли во время исследований в 50-х и 60-х годах. Некоторое время инженеры сталкивались с тем, что они называли «царапиной дьявола» на внутренней поверхности эпитрохоиды. Они обнаружили, что причиной были точечные уплотнения, достигающие резонансной вибрации. Эта проблема была решена за счёт уменьшения толщины и веса торцевых уплотнений. Царапины исчезли после введения более совместимых материалов для уплотнений и покрытий.
- Ещё одна ранняя проблема заключалась в наращивании трещин на поверхности статора вблизи отверстия пробки, которое было устранено путём установки свечей зажигания в отдельной металлической вставке, медной втулке в корпусе вместо вилки, ввинчиваемой непосредственно в корпус блока.
- Четырёхтактные поршневые устройства не очень подходят для использования с водородным топливом. Другая проблема связана с гидратацией на смазочной плёнке в поршневых конструкциях. В ДВС Ванкеля эту проблему можно обойти, используя керамическое торцевое уплотнение на такой же поверхности, так что нет никакой масляной плёнки, чтобы страдать от гидратации. Поршневую раковину необходимо смазать и охладить маслом. Это существенно увеличивает расход смазочного масла в четырёхтактном водородном ДВС.
Материалы для изготовления ДВС
В отличие от поршневого агрегата, в котором цилиндр нагревается процессом горения, а затем охлаждается входящим зарядом, корпуса ротора Wankel постоянно накаляются с одной стороны и остывают с другой, что приводит к высоким локальным температурам и неравному тепловому расширению. Хотя это предъявляет большие требования к используемым материалам, простота Ванкеля облегчает употребление в изготовлении таких веществ, как экзотические сплавы и керамика.
Среди сплавов, предназначенных для использования в Ванкеле, используются A-132, Inconel 625 и 356 с твердостью Т6. Для покрытия рабочей поверхности корпуса используется несколько высокопрочных материалов. Для вала предпочтительны стальные сплавы с малой деформацией при нагрузке, для этого предложено использование массивной стали.
Преимущества двигателя
Основными преимуществами РПД Ванкеля являются:
- Более высокое отношение мощности к весу, чем у поршневого двигателя.
- Легче размещать в небольших машинных пространствах, чем эквивалентный двигательный механизм.
- Нет поршневых деталей.
- Способность достигать более высоких оборотов в минуту, чем обычный двигатель.
- Работа практически без вибрации.
- Не подвержен двигательному удару.
- Дешевле в производстве, потому что двигатель содержит меньше деталей
- Широкий диапазон скоростей, обеспечивающий большую адаптивность.
- Он может использовать топливо с более высоким октановым числом.
ДВС Ванкеля значительно легче и проще, с гораздо меньшим количеством движущихся частей, чем поршневые двигатели эквивалентной выходной мощности. Поскольку ротор перемещается непосредственно на большой подшипник на выходном валу, нет шатунов и коленчатого вала. Устранение возвратно-поступательной силы и наиболее сильно нагруженных и разрушаемых деталей обеспечивает высокую надёжность Wankel.
В дополнение к удалению внутренних возвратно-поступательных напряжений при полном удалении возвратно-поступательных внутренних деталей, учтановленных в поршневом двигателе, двигатель Ванкеля выполнен с железным ротором в корпусе из алюминия, который имеет больший коэффициент теплового расширения. Это гарантирует, что даже сильно перегретый агрегат Ванкеля не может «захватить», как это может произойти в аналогичном поршневом устройстве. Это существенное преимущество в плане безопасности при использовании в самолётах. Кроме того, отсутствие клапанов повышает безопасность.
Дополнительным преимуществом РПД Ванкеля для использования в самолётах является то, что он обычно имеет меньшую фронтальную область, чем поршневые агрегаты эквивалентной мощности, что позволяет создать более аэродинамический конус вокруг двигателя. Каскадное преимущество заключается в том, что меньший размер и вес ДВС Ванкеля позволяет сэкономить затраты на строительство летательного аппарата по сравнению с поршневыми двигателями сопоставимой мощности.
Роторно-поршневые ДВС Ванкеля, работающие в соответствии с их первоначальными проектными параметрами, почти не подвержены катастрофическим отказам. РПД Ванкеля, который теряет компрессию, или охлаждение, или давление масла, потеряет большое количество, но всё-таки будет продолжать производить некоторую мощность, позволяя более безопасную посадку при использовании в самолётах. Поршневые устройства при тех же обстоятельствах подвержены захвату или разрушению деталей, что почти наверняка приведёт к катастрофическому сбою двигателя и мгновенной потере всей мощности.
По этой причине роторно-поршневые двигатели Ванкеля очень хорошо подходят для снегоходов, которые часто используются в отдалённых местах, где отказ двигателя может привести к обморожению или смерти, а также к самолётам, где резкий сбой может привести к крушению или вынужденной посадке в удалённых местах.
Конструкционные недостатки
Хотя многие из недостатков являются предметом текущих исследований, нынешние недочёты устройства Ванкеля в производстве заключаются в следующем:
- Уплотнение ротора. Это всё ещё незначительная проблема, так как корпус двигателя имеет очень разные температуры в каждой отдельной секции камеры. Различные коэффициенты расширения материалов приводят к несовершенной герметизации. Кроме того, обе стороны уплотнений подвергаются воздействию топлива, и конструкция не позволяет точно контролировать смазку роторов. Роторные агрегаты, как правило, смазываются при всех оборотах и нагрузках двигателя и имеют относительно высокий расход масла и другие проблемы, возникающие в результате избыточного количества смазки в зонах сгорания двигателя, таких, как образование углерода и чрезмерные выбросы от сжигания масла.
- Для преодоления проблемы различий в температурах между различными областями корпуса и боковых и промежуточных пластин, а также связанных с ними неравновесных температурных дилатаций, тепловая труба используется для транспортировки нагретого газа от горячей к холодной части двигателя. «Тепловые трубы» эффективно направляют горячий выхлопной газ на более холодные части двигателя, что приводит к снижению эффективности и производительности.
- Медленное горение. Сжигание топлива происходит медленно, поскольку камера сгорания длинная, тонкая и движущаяся. Движение пламени происходит почти исключительно в направлении движения ротора, и завершается тушением, которое является основным источником несгоревших углеводородов при высоких оборотах. Задняя сторона камеры сгорания, естественно, создаёт «сжатый поток», который препятствует достижению пламени к задней кромке камеры. Впрыск топлива, при котором оно поступает к передней кромке камеры сгорания, может минимизировать количество несгоревшего горючего в выхлопе.
- Плохая экономия топлива. Это связано с утечками уплотнений и формой камеры сгорания. Это приводит к плохому сгоранию и среднему эффективному давлению при частичной нагрузке, малой скорости вращения. В соответствии с требованиями, предъявляемыми по выбросам, иногда требуется соотношение топлива и воздуха, которое не способствует хорошей экономии топлива. Ускорение и замедление в средних условиях движения также влияют на экономию топлива. Однако работа двигателя с постоянной скоростью и нагрузкой исключает избыточный расход топлива.
Таким образом, у этого вида двигателя есть свои недостатки и преимущества.
Пожалуйста, оцените этот материал!
Загрузка…Если Вам понравилась статья, поделитесь ею с друзьями!
Двигун Ванкеля — Вікіпедія
Матеріал з Вікіпедії — вільної енциклопедії.
Роторно-поршневий двигунДвигун Ванкеля — роторний бензиновий двигун, сконструйований німецьким інженером Феліксом Ванкелем (Felix Wankel, 1902-1988) у 1950-х. Працює за тим же принципом, що і чотиритактний бензиновий двигун, але такти проходять у різних секторах камери в просторі між стінками двигуна і трикутним поршнем-ротором. Двигун Ванкеля має простішу конструкцію і менші розміри, ніж поршневий чотиритактний двигун, при його використанні енергія обертання виникає відразу ж (без участі колінчатого вала).
Особливість двигуна — застосування тригранного ротора (поршня), що має вигляд трикутника Рело, що обертається усередині циліндра спеціального профілю, поверхня якого виконана по епітрохоїді (можливі й інші форми ротора і циліндра[1]).
Цикл двигуна Ванкеля: впускання (блакитний), стиснення (зелений), робочий хід (червоний), випускання (жовтий) | Анімаційне зображення чотирьох тактів |
Двигун Ванкеля використовує чотирьохтактний цикл:
І такт: Паливно-повітряна суміш через впускне вікно надходить до камери двигуна
ІІ такт: Ротор обертається та стискає суміш, що запалюється електричною іскрою
ІІІ такт: Продукти горіння тиснуть на поверхню ротора, передаючи зусилля на циліндричний ексцентрик
IV такт: Ротор, що обертається, витискує відпрацьовані гази у випускне вікно
Головний вал з ротором—поршнем двигуна Wankel DKM54 Мініатюрний двигун Ванкеля об’ємом 5 см³ для авіамоделей- На 30–40% менше деталей
- Мала відносна вага
- Компактність
- Велика тяга та пружність
- Можливість легкого переходу на водень
- Нечутливість до гіроскопічного ефекту[2]
- Неповне згоряння паливо-повітряної суміші
- Зменшення економності
- Недостатня чистота викидів
- Неможливий дизельний РПД
- Порівняно великі витрати мастила для змащування деталей
- Необхідність додаткових заходів для усунення вібрації корпусу двигуна[2]
розроблено в компанії Be-Rex (Нідерланди))[2]
- ↑ Різні варіанти конструкції роторно-поршневого двигуна Архівовано 4 жовтень 2011 у Wayback Machine. (англ.)
- ↑ а б в Слюсар, В.І. (2019). Пошук джерел сили. Проблемні аспекти енергетичного менеджменту транспортних платформ – з урахуванням основних трендів та підходів наукових структур НАТО.. Defense Express. — 2019, № 8 (серпень). с. 38 – 41.
Как работает роторный двигатель Ванкеля
Одна из проблем с обычной машиной двигатель конструкции в том, что поршни двигаться по прямой линии вверх и вниз в их цилиндры , чтобы произвести то, что известный как возвратно-поступательное движение ,
Внутри двухроторного Ванкеля
NSU Ro80 и более современные автомобили Mazda с двигателями Wankel используют сдвоенные роторы. Роторы приводят в движение выходной вал, проходящий через их центр.Этот вал связан с маховиком, чтобы сгладить импульсы мощности двигателя. Преимущество сдвоенных роторов заключается в том, что при установке на 180 ° не в фазе друг с другом один ротор устраняет любые вибрации, создаваемые другим ротором, что обеспечивает исключительно плавную работу двигателя.И все же дорожные колеса требуют другого вида движения — вращательное движение , к превратить возвратно-поступательное движение во вращательное движение, поршни связаны с коленчатый вал так что, когда поршни поднимаются и опускаются, они заставляют коленчатый вал поворот.Вращательное движение коленчатого вала может затем передаваться на дорогу колеса, чтобы вести их вокруг.
Автомобильный двигатель был бы намного проще, если бы поршни могли вращаться вместо двигаться вверх и вниз, потому что вращательное движение, создаваемое таким образом, может быть передается непосредственно на дорожные колеса (хотя передача все равно будет требуется).
Еще одно преимущество такого роторный двигатель было бы, что поршни всегда путешествовать в одном направлении — круг. Ни один из двигателей власть будет потрачена впустую, остановив поршни в конце их инсульт и ускоряя их снова в противоположном направлении, как это происходит в Поршневой двигатель.
Ванкеля мощности
Дизайн двигатель Ванкеля делает его гораздо более мощным, чем поршневой двигатель той же мощности. NSU Wankel Spyder, с его двигателем 498cc, развивает максимальную скорость почти 100 миль в час, это один из примеров. Совсем недавно Mazda RX-7 купе имеет двигатель мощностью только 1308 куб. См (654 куб. См на ротор), но имеет характеристики, аналогичные Porsche 924S вместимостью 2479 куб. Чтобы приравнять мощности двигателей Ванкеля и поршневых С точки зрения производительности, мощность двигателя Ванкеля должна быть увеличена на 18. Это означает, что двигатель RX-7 объемом 1308 куб. См имеет ту же мощность, что и двигатель. поршневой двигатель объемом 2354 куб.развитие
Несмотря на привлекательность этой идеи, только один тип роторного двигателя когда-либо был успешно используется в автомобилях. Это двигатель Ванкеля, разработанный Феликсом Ванкеля.
Он начал исследовать роторный компрессоры в 1938 году. После Второй мировой войны он объединился с NSU (немецкий производитель автомобилей позже, чтобы стать частью VW Audi) превратить его компрессоры в практически осуществимые двигатель внутреннего сгорания ,
К 1957 году Ванкель построил экспериментальный роторный двигатель, который работал на испытательный стенд, и в 1964 году этот двигатель был предложен публике в NSU Wankel Spyder. Этот небольшой спортивный автомобиль с задним расположением двигателя имел двигатель Ванкеля объемом 498 куб. См. мог развивать 50 л.с. и имел максимальную скорость 95 миль в час (152 км в час).
Spyder никогда не завоевывал популярность среди публики, и автомобиль, который действительно принес двигатель славы Ванкеля был NSU R080, который был признан автомобилем Год 1968. У этого есть двигатель с двумя роторами 995c и мог достигнуть 110mph (176 км в час).
Внутри Ванкеля
Сердцем двигателя Ванкеля является трехсторонний поршень, называемый ротором вращается внутри корпус ротора , На каждой стороне корпуса есть торцевая пластина.
Стороны ротора изогнуты в три лепестка, а корпус ротора примерно в восемь фигур, так что при вращении ротора зазор между каждой стороной ротора и корпуса попеременно увеличивается и меньше. Этот постоянно меняющийся разрыв является ключом к сгорание обработать.
топливо смесь воздуха / воздуха рассчитана на вход в корпус в момент, когда ловушке объем между стенкой корпуса и одним из лепестков ротора растет. Поскольку этот объем увеличивается, он создает вакуум , рисуя в топливовоздушная смесь через отверстия в корпусе и концевой плите.
При вращении ротора этот объем начинает уменьшаться, сжимая топливно-воздушная смесь. Эта смесь затем проходит через свеча зажигания установить в стена корпуса. искра загорается, чтобы воспламенить смесь, вызывая ее расширить и привести в движение ротор вокруг цикл ,На данный момент объем между ротор и корпус увеличиваются, чтобы позволить это расширение газов. Наконец, объем снова уменьшается, вытесняя отходящие газы через выхлопные отверстия.
Таким образом, ротор проходит тот же четырехтактный цикл, что и поршневой двигатель — индукционный , компрессия , мощность и выхлоп — но каждый из трех лопасти ротора проходят этот процесс непрерывно, поэтому есть три силовые удары за каждый оборот ротора.
Через центр ротора проходит выходной вал к которому ротор связан системой планетарные передачи похоже на это в автоматическом коробка передач (см. системы 44 и 45).Зацепление позволяет ротору следовать эксцентричный орбите так, чтобы три ротора постоянно касались Корпус.
Когда ротор вращается, он вращает этот вал. Вал несет это вращательное движение к передача инфекции и так до дороги колеса.
Цикл зажигания роторного двигателя Ванкеля
Индукция
Когда верхушка ротора проходит через впускное отверстие, следующая камера начинает увеличиваться в размерах из-за эксцентричной орбиты ротора.Это приводит к тому, что топливно-воздушная смесь всасывается в камеру.Сжатие
Поскольку ротор продолжает вращаться, камера начинает уменьшаться в размерах, сжимая смесь топлива / воздуха, готовую к воспламенению.Зажигание
Когда камера проходит над свечами зажигания, они загораются, чтобы воспламенить смесь. Все современные двигатели Wankel оснащены двумя свечами зажигания, чтобы обеспечить равномерное горение топливовоздушной смеси по всей камере.Выхлоп
Расширение горящих газов заставляет ротор вращаться вокруг своего цикла, проходя через выпускное отверстие, где газы вытесняются из камеры. Этот цикл продолжается во всех трех камерах одновременно.Различия
Конструкция двигателя Ванкеля означает, что он не имеет клапаны — топливо / воздух смесь просто входит и покидает камеру через отверстия в корпусе ротора и концевая пластина.Поэтому у него также нет рокеров, распределительный вал или толкатели.
Это означает, что Ванкель имеет около половины числа частей Поршневой двигатель. Это также легче и компактнее. Тем не менее, это все еще нуждается во многих из тех же вспомогательных устройств, что и другие двигатели — стартер , генератор , система охлаждения , карбюратор или впрыск топлива , масляный насос и так далее. Однажды двигатель установлен со всем этим, он теряет большую часть преимущества своего компактность и легкий вес.
Тем не менее, двигатель Ванкеля в Ro80 широко хвалили за его плавный ход и отсутствие вибрации.Это было частично из-за двигателя с двумя роторами, установленными на одной линии друг с другом, но в отдельных корпусах. каждый вращался примерно на том же выходном валу, но их время было установлено на 180 ° так, чтобы любой дисбаланс сила произведенный одним ротором, будет отменен тем же силы другого ротора, и чтобы они совместно производили более равномерный поворотное движение.
Ограничения Ванкеля
Хотя проблема морские котики в настоящее время в значительной степени разобрались, это до сих пор не удалось использовать весь потенциал двигателя Ванкеля для использования в автомобиле из-за ограничения срока службы компонентов двигателя.Еще одной проблемой является то, что обычный поршневой двигатель автомобиля хорошо работает в довольно широком диапазоне скоростей и нагрузок, тогда как Двигатель Ванкеля работает лучше всего в гораздо более узком диапазоне.Ранние проблемы
После того, как базовый дизайн Ванкеля был создан, проблемы скоро стало очевидным. Одним из них была печать износа. Роторы уплотнены со всех сторон убедитесь, что газы не просачиваются через наконечники из частей с высокой степенью сжатия корпус для деталей с низким сжатием.Эти печати были подвержены износу и поломка, в результате чего двигатель теряет компрессию и, следовательно, мощность.
На поршневом двигателе это уплотнение выполняется частично клапанами и частично поршневые кольца , но уплотнения на двигателе Ванкеля ставятся особо проблемы.
Уплотнения были наименее эффективными при низких оборотах двигателя, где они должны быть оснащен пружинами, чтобы держать их прижатыми к боковой части корпуса.
Но на высоких оборотах двигателя комбинация центробежные силы и высоко газ давление прижать уплотнения гораздо сильнее к корпусу.Результирующий трение означало потерю мощности и значительный износ уплотнений, которые вскоре сломал.
Ранние Wankels имели печати из углерод , но позже дизайны имели особые чугунные уплотнения, которые оказались более долговечными. Для обеспечения дополнительной защиты внутри корпуса и концевых панелей было нанесено износостойкое покрытие.
Вторая серьезная проблема — это износ беговой поверхности в форме восьми с помощью «болтовни» печатей. Это приводит к гофрам на ходу поверхность и сокращает срок службы двигателя.
Камерные формы
Mazda 13B Роторный двигатель
Индукция, расположение двигателя и выхлопной системы роторного двигателя Mazda 13B. Этот двигатель имеет электронный впрыск топлива с двумя топливными форсунками на ротор. Первичные инжекторы работают все время, в то время как вторичные включаются только при повышенной частоте вращения или нагрузке двигателя. Выбросы выхлопных газов сокращаются с помощью теплового реактора для нагрева отходящих газов — тепло подается теплообменником дальше по выпускной трубе.Другая проблема с двигателем Ванкеля — это форма сгорание камера , В типичном поршневом двигателе камера примерно полусферический, который помогает обеспечить равномерное горение топливно-воздушной смеси и постепенно. В двигателе Ванкеля камера сгорания неизбежно длинна и плоский, форма, которая делает оптимальное сгорание намного более трудным.
Частичным решением проблемы камеры сгорания было поместиться две искры вилки расположены на небольшом расстоянии друг от друга.Мазда — чья RX-7 сейчас единственная Автомобиль с двигателем Ванкеля, поступивший в продажу в Великобритании сегодня (см. Ниже) — принял этот принцип продвиньтесь дальше, устанавливая две штепселя, с одним штепселем, стреляющим долю секунды позже, чем другой. Эта договоренность требует двух отдельных зажигание системы с двумя катушки ,
Отсутствие успеха
Несмотря на мощь и плавную работу Wankel, он до сих пор не смог завоевать популярность среди подавляющего большинства производителей автомобилей.
Основной причиной является высокий расход топлива, вызванный тенденцией смесь топлива и воздуха гореть неравномерно.Неравномерное сгорание в двигателе Ванкеля также создает еще одну проблему — высокий излучение уровни частично сгоревших углеводороды (загрязнение выхлопных газов).
За годы, прошедшие с R080, появились теоретические преимущества Ванкеля. Двигатель к известности, были различные нефтяные кризисы и продолжающиеся давление со стороны правительств и общественности на более низкие уровни выбросов выхлопных газов и лучший расход топлива.
Ни одно из этих требований не поддерживает двигатель Ванкеля и, кроме того, оно имеет означает, что большинству автопроизводителей пришлось посвятить много времени и денег повышение эффективности существующих двигателей.
,двигатель Ванкеля MLFREE
двигатель Ванкеля
Интересно, что когда-то многообещающий проект двигателя Ванкеля за всю историю его существования закончился, можно сказать, довольно неудачно. Начало автомобильной промышленности началось с окончательного создания двигателя внутреннего сгорания, основанного на принципе цикла Отто. Это, конечно, был двигатель, конфигурация и принцип которого остались неизменными по сей день — только (значительно) улучшены.Двигатель работает по принципу поршней, цилиндров и валов. Различные инженеры пытались разработать более эффективное решение на протяжении столетия (от создания автомобиля в 1896 году до настоящего времени). Существовали различные патенты и изобретения, но просто не могло быть такого эффективного решения, чтобы в конечном итоге классический агрегат был бы снят с производства и заменен новым, более совершенным. По этой причине сегодня мы по-прежнему ездим на автомобилях в соответствии с принципами, которые Отто задумал и реализовал еще в 1876 году.Однако было несколько решений, которые могли бы заслужить шанс. Из этих нескольких можно выделить агрегат Ванкеля. Феликс Ванкель (1902 — 1988) был немецким инженером, а затем профессором, ответственным за это интересное творение. На самом деле настоящее название двигателя Ванкеля — роторный двигатель внутреннего сгорания. Много ученых высказали свое мнение по этому вопросу перед самим Ванкелем. Самая ранняя летопись этого типа двигателей восходит к семнадцатому веку в Италии.Ранние дизайнерские работы были даже даны Джеймсом Уаттом и Эрикссоном, но это было далеко от финальной версии. Сам Феликс Ванкель довольно долго ждал своей окончательной версии по той простой причине, что жизнь в Германии в период его работы была чрезвычайно сложной. Однако в 1933 году Ванкель подал заявку на патент на роторную машину DKU (первый тип двигателя Ванкеля), которую он официально получил в 1936 году. DKU (Drehkolben Mashine) очень похож на более современные машины Vankel, с общий размер гораздо больше, более непрактично (для замены вам придется разобрать весь двигатель и т. д.)) но и мощнее — до 25000 об / мин в обычном режиме! Тем не менее, это был всего лишь прототип; нужно было что-то сделать, что можно было бы использовать в более широком диапазоне движущихся машин. Это был KKM (Kreiskolben Motor), созданный в середине 50-х годов. Решающую роль в жизни г-на Ванкелы сыграла работа в НГУ. Уолтер Фроде, руководитель отдела мотоциклетной работы в NSU, увидел много возможностей в работе Феликса Ванкеля и решил финансировать его будущие проекты. Уже в 1958 году был построен первый двигатель KKM Vankel мощностью около двадцати лошадиных сил.Впоследствии началась доработка настоящего изобретения и даже установка двигателей Ванкеля на транспортных средствах NSU. Однако, что, возможно, ближе и более нам знакомо, это работа Mazda. Эта японская компания также увидела некоторые преимущества в использовании таких двигателей, поэтому она решила сначала установить ее на ранних версиях XNUMX. Даже сегодня они не отказываются от этой традиции, поэтому у нас есть знаменитая серия Mazdin RX, которая не покидает агрегаты Wankel с 1978 года. Но как этот двигатель работает на самом деле?
двигатель Ванкеля
Все существующие решения, которые отметили историю автомобильной промышленности, были проиллюстрированы Отто и его циклом / двигателем.И Ванкель принадлежит к этой группе. Таким образом, двигатель Ванкеля также работает по принципу внутреннего сгорания со всеми стандартными четырьмя этапами работы. Как упомянуто выше, это соответственно фазы INJECTION, COMPRESSION, COMBUSTION и EJECTION. Этот принцип работы также следует циклу Отто с вращающейся машиной. Однако сам принцип работы, то есть то, как эта машина проводит эти циклы, полностью отличается от обычных устройств. Одно из самых больших отличий может заключаться в том, что в классических двигателях все четыре ступени проходят в одном и том же пространстве, в одном «камерном» цилиндре.Это, конечно, достигается за счет синхронной работы клапанов, поршней, кулачков и т. Д. С другой стороны, с двигателем Ванкеля у нас нет классических цилиндров со всеми сопутствующими деталями (поршни, клапаны …), а только одна (или две) камеры, в которых фазы указанного цикла Отто происходят раздельно! Вращающийся двигатель также использует давление, полученное в фазе сгорания, для привода узла. Теория, следовательно, та же самая, но практика диаметрально отличается. Прежде чем мы начнем объяснять, как мы работаем, давайте сначала познакомимся с основными частями этого блока.
Как и обычные двигатели, Vankel также имеет стандартный блок, который охлаждается рядом каналов, которые проходят через основной материал и проходят через жидкость. Внутри блока двигателя Vankel находится корпус (противодействие блоку, удерживающему цилиндр), который окружает камеру, в которой выполняется вся операция. Внутри этой (большей) камеры находится основная часть вращающейся машины — ротор. Ротор логически вращается и с помощью вала, проходящего через центр ротора, приводит в движение другие коробки передач / трансмиссии, которые приводят в движение ведущие колеса.Остальные подсистемы двигателя Ванкеля аналогичны тем, которые используются в обычных двигателях, включая систему подачи топлива / смеси или свечи зажигания. Однако, давайте придерживаться самой важной части двигателя Ванкеля, а именно ротора. Как вы можете видеть на рисунке, он имеет треугольную форму с шестерней и подшипником посередине. Это говорит нам о том, что он может свободно вращаться, с центром оси прямо там. Таким образом, он установлен в указанной камере и вращается ВСЕГДА по часовой стрелке. Сама камера имеет форму вытянутой окружности / эпитрохоида, и ротор в ней расположен так, что между внутренней стенкой камеры и тремя сторонами ротора нет свободного пространства, кроме свободного пространства.На самом деле это не классические стороны треугольника, а выпуклые. Причиной этому является идеальное и максимально легкое наклонение выпуклых сторон на внутренние стенки камеры при вращении. На концах этих страниц находятся конкретные выпуклые металлические детали, которые находятся в постоянном контакте со стенками камеры. Учитывая, что у нас есть три таких уплотнения, то логично, что в одной камере ротор создает три отдельных камеры одновременно, в которых происходит процесс цикла Отто.Давайте вернемся на мгновение к форме самой камеры. Это не классический круг, а растянутый круг. С другой стороны, ротор представляет собой равносторонний треугольник, который вращается внутри него. Это говорит нам о том, что хотя все выпуклые стороны ротора одинаковы, по-прежнему существуют различия в объемах этих трех меньших камер. Кроме того, следует упомянуть, что на поверхностях этих выпуклых сторон имеются специальные углубления, которые допускают большее количество смеси внутри двигателя за один раз.Третья существенная часть всей системы (помимо ротора и камеры) — это вал, который идет от середины ротора, вращается в том же направлении и представляет собой своего рода выход всей совокупности. Как правило, этот вал вращается в три раза быстрее, чем сам ротор — за один оборот вал вращается три раза. Как продвигается процесс внутреннего сгорания в Ванкеле?
Мы рассмотрели некоторые основы двигателя Ванкеля. Мы познакомились, во всяком случае, с основными частями под самим блоком.Теперь их просто нужно объединить в функциональное целое. Это довольно легко сделать с помощью вращающейся машины! Принцип действия цикла Отто очень прост и логичен, и вы, вероятно, предполагаете, что он работает … В любом случае, различия между классическим и двигателем Ванкеля здесь еще более углубляются. Как я уже упоминал выше, система впрыска для смеси точно такая же — раньше она была через карбюратор, а сегодня электронная. Тем не менее, существует большая разница в том, как смесь попадает в сам двигатель.А именно, нет форсунок или специальных насосов. Одна часть камеры (на стороне, противоположной сторонам ротора) имеет отверстие, через которое постоянно нагнетается смесь под давлением карбюратора и насоса. Теперь мы будем следить за одним оборотом ротора в камере, то есть отправим один цикл Отто двигателя Ванкеля:
Injection — двигатель Ванкеля
ФАЗА ВВОДА : Когда двигатель Ванкеля запускается, ротор приводится в действие электрическим приводом. Затем он вращается искусственно (как в случае классического двигателя) и в этом случае перемещает впрыск смеси топлива и воздуха через вышеупомянутые отверстия на стенке камеры.Таким образом, смесь поступит в первую / одну из трех свободных, образованных внутри ротором и камерой или ее внутренней стенкой. Впрыск продолжается до тех пор, пока прокладка не сломает ее, потому что она закрывает одну меньшую камеру. Теперь смесь находится внутри камеры, внутри двигателя, все еще вращаясь по часовой стрелке. Ротор теперь подходит к той части камеры, где он больше не изогнутый / круглый, а полностью плоский. Эта камера самая маленькая и принадлежит ко второй части нашей истории;
Компрессия — двигатель Ванкеля
Учитывая, что такая вновь образованная камера самая маленькая, логично, что давление в ней самое высокое.Итак, мы попали на ФАЗУ СЖАТИЯ . Когда уровень сжатия, достигнутый в этом случае, является самым высоким, тогда это классические свечи зажигания, которые воспламеняют смесь и производят типичный взрыв. Ротор продолжает вращаться и покидает секцию свечи зажигания. Новая камера сформирована, в которой имеет место фаза сгорания;
Сжигание — двигатель Ванкеля
ФАЗА СГОРАНИЯ : В этот момент ротор образует камеру в нижней (большой) камере.Фактически, во время первого оборота ротора после электрического стартера, это та часть, когда весь блок фактически запускается и начинает работать без электрического стартера. Таким образом, взрыв заставляет ротор двигаться дальше, и теперь Vankel возобновляет нормальную работу. В камере сгорания выбрасывается весь побочный продукт более раннего взрыва. А именно, в этой части большой камеры есть отверстие, которое ведет весь этот газ дальше к выпускной ветви… Это отверстие расположено чуть ниже отверстия, которое используется для введения смеси в двигатель.Это говорит нам о том, что ротор почти завершил свой оборот и что он был завершен, а фаза выброса ! Затем будет заново сформирована камера, в которую будет вставлена смесь, а затем все начинается снова…
Что очень важно, так это то, что, читая этот текст выше, вы задали себе (и мне) вопрос: «Что происходит с другими меньшими камерами, которые образуются в тот же момент, когда вращается ротор?». Это отличный вопрос, и первый верный признак того, что вы полностью выяснили, как работает двигатель Ванкеля! И ответ на вопрос таков: другие камеры одновременно выполняют процесс один за другим.Таким образом, когда происходит первая фаза впрыска топлива и уплотнение закрывает эту конкретную камеру, образуется следующая камера (путем дополнительного вращения), в которую впрыскивается смесь и так далее. Процесс повторяется бесчисленное количество раз. Таким образом, мы получаем большую камеру, в которой одновременно могут проходить ТРИ части процесса Отто! Это, безусловно, имеет свои преимущества … В любом случае, именно так Ванкель поворачивается. При вращении ротора приводится в действие центральный вал, с которым ротор соединен посредством шестерни.Кроме того, на центральной оси имеются специальные выступы (например, распределительный вал для обычных узлов), которые помогают ротору вращать вал. Сам двигатель Ванкеля обычно имеет две (или более) камеры с роторами, поэтому холмов столько же, сколько есть. Они установлены на оси друг против друга и таким образом заставляют оба ротора вращаться не синхронно, а одновременно — например, если один находится в фазе впрыска, то другой находится в фазе впрыска — следовательно, противоположный набор. Это способствует культивируемой и устойчивой работе всего агрегата.Кроме того, двигатель Ванкеля обладает рядом других преимуществ. Как выносливость. Машина WANKEL, несомненно, пройдет больше миль, чем стандартные двигатели, исключительно из-за меньшего количества деталей двигателя и, следовательно, с меньшей вероятностью неисправности. Это устройство обычно вращается медленнее, чем обычно, потому что, как мы уже говорили, ротор движется в три раза быстрее, то есть вал. Это способствует меньшему износу внутренних частей блока и опять же — более долговечно и долговечно. Конечно, есть и очень веские причины, по которым двигатель Ванкеля не смог бороться за свое место под солнцем.Во-первых, сложно построить такой двигатель, который мог бы соответствовать всем нормам по выбросам. Машина WANKEL имеет гораздо более сильный взрыв в двигателе, чем стандартная, поэтому проблема «уничтожения» всех этих газов является большой проблемой для инженеров. Второе, и, пожалуй, самое важное, это стоимость высокопроизводительного производства двигателя Ванкеля. Сегодня у вас есть большое количество компаний в мире, которые являются поставщиками для крупнейших мировых автопроизводителей, для запчастей для стандартных двигателей внутреннего сгорания.Следовательно, согласно закону рынка, возникает конкуренция, увеличивается спрос и цены падают на такие продукты / полуфабрикаты / сырье. С другой стороны, не так много таких поставщиков, которые могут поставить по любой нормальной цене любую из специфических частей роторного двигателя. Имея это в виду, производители, которые решили установить такой двигатель, должны учитывать гораздо более высокие затраты, чем те, которые требуются для цилиндрических двигателей. В-третьих, двигатель Ванкеля потребляет много топлива. Низкая степень сжатия и очень продолжительный взрыв в двигателе способствуют тому, что такой двигатель потребляет больше бензина.Все это более чем достаточно для производителей, чтобы не начинать «приключения» с установкой Vankel на своих автомобилях. По крайней мере, на данный момент … может быть, через пару лет может появиться лучшее решение и вариации на эту тему? Во всяком случае, сегодня у нас есть по крайней мере один мировой производитель, который не позволяет вращающейся машине исчезнуть.
Конечно, это Mazda, которая давно известна частым использованием машины Vankel в своих автомобилях. В 1978 году вышла первая Mazda RX-7 со значительно улучшенной версией бывшего поворотного агрегата, а спустя 25 лет она не отказалась от этой технологии.Модель RENESIS, которая в настоящее время включена в преемник серии RX-8, является чрезвычайно ярким пятном в дальнейшем развитии этого типа трансмиссии. Принцип работы двигателя, встроенного в эту мазду, точно такой же, как я объяснил до сих пор. В сочетании с многочисленными электронными достижениями, прежде всего, благодаря управлению работой двигателя и всех соответствующих блоков ECU, он достиг феноменального результата с новым RX-8 и его двигателем следующего поколения! RENESIS — это роторная машина Vankel KKM с двумя роторами, установленными на одном центральном валу, общим объемом 1308 кубических сантиметров (две камеры объемом 654 куб. См).Конечно, этот объем представляет все свободное пространство, которое находится в большой камере вокруг ротора. Есть два варианта двигателя для RX-8 — нижний с 192 лошадиными силами и более сильный с 231 л.с. Так что это очень мощные двигатели с исключительным ускорением, но огромным расходом топлива! Тем не менее, некоторые могут дать что-нибудь, просто чтобы постоянно слушать великолепный, глубокий звук этой машины Ванкеля. Но, по крайней мере, регистрация такого автомобиля будет значительно дешевле, учитывая, что кубический метр всего 1,3 литра! Будем надеяться, что кто-то еще в ближайшем будущем даст шанс этому слегка интересному двигателю, хотя это не совсем идеальный двигатель будущего.Я говорю это в первую очередь из-за все более строгих условий и стандартов в отношении выхлопных газов, которые в последнее время устанавливают штаты и общины.
,
Ванкеля роторный двигатель Page 2
FELIX WANKEL
Ванкеля родился в 1903 году в Ларе в Шварцвальде в Германии.
Он был работал в отделе продаж научного издательства в Гейдельбург с 1921 по 1926 год.
В В 1924 году он открыл мастерскую в Гейдельбурге, где делал свои первые модели. роторно-поршневого двигателя. Понимая, что главная проблема с такими конструкциями была газонепроницаемость, он потратил немало времени пытаясь решить это.К 1927 году проблемы были в значительной степени решена.
Во время Вторая мировая война, он работал в немецком Luftfahrtministerium (Air Министерство).
В 1951 году Ванкель и НГУ подписали договор о создании партнерства для развития роторно-поршневой двигатель.
вкл 13 апреля 1954 года НГУ был построен первый роторный двигатель Ванкеля — Vier Takte in einer Maschine, das sind vier Erfindungen in einer einzigen (Четыре цикла в одном двигателе — это не менее четырех изобретений в один).
В В 1956 году прототип мотоцикла NSU выиграл все испытания в своей категории. и побил несколько мировых рекордов на Большом Соленом озере в США — его двигатель питался от нагнетателя ванкеля.
В 1958 году НГУ начал испытания двигателя Ванкеля.
В 1960 двигатель Ванкеля впервые был публично обсужден на конгрессе Ассоциация немецких инженеров.
В 1963 году NSU запустил Паук с двигателем Ванкеля на автосалоне во Франкфурте.
В 1964 году Компания COMOBIL была основана в Женеве — совместное предприятие НГУ и Citron — для разработки автомобиля с роторным двигателем.
В 1967, компания COMOTOR, другое совместное предприятие NSU / Citron было создано в Люксембурге с целью производства и маркетинга Ванкеля двигатель. На автосалоне во Франкфурте NSU представил Ro80, который поступил в продажу в 1968 году.
В 1969 году COMOTOR приобрел 850 000 м 3 земли в Сааре, чтобы построить завод, где будет производиться двигатель Ванкеля.
В В 1970 году Citron выпустил прототип M35.
Двигатель
Одиночный ротор
Ванкель
993 см 3 развернутый объем
6 CV фискальный
рейтинг
9: 1
степень сжатия
49 л.с. при 5
500 об / мин
7 мкг (50,6
фунт фут) крутящий момент @ 2745 об / мин
с водяным охлаждением
Подвеска
Гидропневматический сам
нивелирование на все четыре колеса
Тормоза
Передние диски,
задние барабаны
Кузов
Модифицированная Ами
8 двухдверный переворот
Колесная база
2,4 м, передняя колея
1,26м
Задняя колея
1,22м
Длина 4,05м
Ширина 1,554м
Высота 1,35м
Вес 815кг
Производительность
Макс. Скорость
144 км / ч
0 — 100 км / ч
19 секунд
9,68 л / 100 км
Между В 1971 и 1972 годах 267 M35 были предоставлены отобранным клиентам в рамках надзор за Citron, который обслуживал транспортные средства.30 000 км были покрыты этими мобильными испытательными стендами и собранной информацией позволили улучшить дизайн — особенно в отношении газа герметизация, подкладка и охлаждение трохоида.
В Параллельно был разработан новый двигатель с двумя роторами на базе агрегата М35. и в 1972 году первые такие двигатели были поставлены с COMOTOR Завод в Альтфорвайлер на Сааре.
Как
COMOTOR двигатель работает
двигатель
работает по четырехтактному принципу, а именно:
Стадия 1.
смесь воздуха и бензина подается через впускное отверстие.
Этап 2.
Затем ротор отключает этот порт и сжимает смесь.
Этап
3 Топливная смесь зажигается свечами зажигания в точке
высокая компрессия Горящая смесь расширяется, вызывая ротор
вращать, тем самым обеспечивая движущую силу.
Этап
4 Ротор очищает выпускное отверстие, позволяя эвакуировать
выхлопные газы.
роторный поршень, также известный как ротор, имеет форму равностороннего треугольник с изогнутой стороной и движется внутри статора или трохоида в движение, известное как эпитрохоид, который учитывает изменения объема в пределах «камера сгорания».Передача между ротором и выходом вал таков, что при скорости вращения ротора 1000 об / мин выходной вал вращается со скоростью 3000 об / мин.
Двигатель COMOTOR 624 был установлен в недолговечном GZ Birotor
Количество
роторы 2
развертки
1 990 см 3
11 CV фискальный
рейтинг
9: 1
степень сжатия
107 л.с. @ 6
500 об / мин
14 мкг
(101,3 фунта-фута) при 3000 об / мин
Двигатель внутреннего сгорания — Energy Education
Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, так как они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так, потому что топливо зажигается, чтобы сделать работу в двигателе. [1] Та же смесь топлива и воздуха затем выбрасывается в качестве выхлопных газов. Это можно сделать с помощью поршня (называемого поршневым двигателем) или с помощью турбины.
Закон идеального газа
Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ хотеть расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется, чтобы повысить температуру газа.
Когда в систему добавляется тепло, это заставляет газ внутри расширяться. В поршневом двигателе это вызывает подъем поршня (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, поворачивая турбину (Рисунок 1). Прикрепляя поршень или турбину к распределительному валу, двигатель способен преобразовывать часть подводимой энергии в систему в полезную работу. [2] Для сжатия поршня в двигателе с прерывистым сгоранием двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное сгорание, просто истощает свой газ непрерывно, а не в цикле.
Поршни против турбин
Рис. 1. Схема газотурбинного двигателя. [3]Двигатель, в котором используется поршень , , называется двигателем сгорания с прерывистым циклом , а двигатель с турбиной называется двигателем сгорания с непрерывным движением .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.
Поршневой двигатель чрезвычайно чувствителен по сравнению с турбиной, а также более экономичен при низких выходах. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. Наоборот, турбина имеет превосходное отношение мощности к весу по сравнению с поршневым двигателем, и ее конструкция более надежна для непрерывной высокой производительности. Турбина также работает лучше, чем безнаддувный поршневой двигатель на больших высотах и при низких температурах.Его легкий вес, надежность и высокая высотная способность делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для производства электроэнергии.
Четырехтактный двигатель
- главная страница
Хотя существует много видов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из наиболее распространенных.Он используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.
- Топливо впрыскивается в камеру.
- Топливо воспламеняется (в дизельном двигателе это происходит иначе, чем в бензиновом двигателе).
- Этот огонь толкает поршень, который является полезным движением.
- Отходы химикатов, по объему (или массе) это в основном водяной пар и углекислый газ. Там могут быть загрязнители, а также угарный газ от неполного сгорания.
Двухтактный двигатель
- главная страница
Как видно из названия, система требует только двух поршневых движений для выработки энергии. Основным дифференцирующим фактором, который позволяет двухтактному двигателю работать только с двумя поршневыми движениями, является то, что выпуск и впуск газа происходят одновременно, [6] , как видно на рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за его частого контакта с движущимися компонентами, топливо смешивается с маслом для добавления смазки, что позволяет плавно перемещаться. В целом двухтактный двигатель содержит два процесса:
- Добавляется топливовоздушная смесь и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения.Свеча зажигания зажигает сжатое топливо и начинает рабочий ход.
- Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отработанное тепло уходит.
Роторный (Ванкель) двигатель
- главная страница
В двигателе этого типа имеется ротор (внутренний круг, обозначенный буквой «B» на рис. 4), который содержится в корпусе овальной формы.Он выполняет общие четырехтактные этапы цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три рабочих удара за оборот .
для дальнейшего чтения
Список литературы
- ↑ 1,0 1,1 Р. Д. Найт, «Тепловые двигатели и холодильники» в Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, ch.19, с.2, с.530
- ↑ Р. А. Хинрикс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио Канада: Брукс / Коул, 2013, ч.4, с.93-122
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
- File «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[Accessaged: 17- мая-2018].
- ↑ C. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007
- ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif