Для чего на двигателях внутреннего сгорания применяют турбонаддув – Принцип работы и особенности турбонаддува на бензиновых и дизельных двигателях: 3 преимущества турбины

Турбонаддув — Энциклопедия журнала «За рулем»

В турбокомпрессоре используются центробежные насосы. Под действием центробежных сил, вызванных вращением колеса с лопатками, воздух отбрасывается к периферии колеса, а в его центре создается разрежение, что обеспечивает всасывание воздуха. Для эффективной работы турбокомпрессора частота вращения колеса компрессора должна быть очень высокой не менее 50–100 тыс. мин–1.
При работе ДВС из выпускного трубопровода под давлением выбрасываются продукты сгорания, которые имеют высокую температуру. Поток газов приводит во вращение колесо турбины, которое передается закрепленному на общем вале колесу компрессора.
Для достижения фазы наддува, т. е. момента, когда давление воздуха на впуске превысит атмосферное, необходимо, чтобы была достигнута определенная частота вращения турбины (не менее 60 000 мин–1). При малых оборотах двигателя турбокомпрессор работает в дежурном режиме (частота 5 000–10 000 мин–1). Необходимо учитывать, что наличие турбины в выпускном тракте создает сопротивление выходу отработавших газов.

Очень важный вопрос — выбор правильного размера турбины для конкретного двигателя. В первых двигателях с турбонаддувом для легковых автомобилей 1970-х гг. использовались готовые конструкции, разработанные, как правило, для дизелей больших грузовых автомобилей. Такие устройства давали хороший результат для увеличения максимальной мощности, но были неэффективными для получения большого крутящего момента в среднем диапазоне частот вращения двигателя, т. е. для получения достаточной приемистости автомобиля. Большие турбины требовали некоторого времени на «раскрутку», когда при небольших нагрузках открывалась дроссельная заслонка, что приводило к задержке нарастания давления наддува. Этот эффект получил название

турбоямы.


Схема работы турбокомпрессора с изменяемой геометрией

Большинство современных турбокомпрессоров легковых автомобилей имеют небольшие размеры и высокую частоту вращения. Для того чтобы увеличить диапазон частот вращения двигателя, при которых турбонаддув обеспечивает повышение давления, применяются по два турбокомпрессора на одном двигателе. Один турбокомпрессор работает при низких оборотах, а второй при высоких. В последних поколениях наддувных двигателей стали применяться

турбокомпрессоры с переменной геометрией, которые сохраняют высокую скорость газов при малых нагрузках, так что турбина всегда вращается с нужной скоростью. В таких турбокомпрессорах поток направляемых на турбину газов управляется с помощью специальных поворачивающихся заслонок. Одновременный поворот заслонок производится с помощью штока вакуумной камеры. Разрежение в камере регулируется электромагнитным клапаном по сигналу компьютера.

При работе системы турбонаддува происходит сильный нагрев турбины, а компрессор остается сравнительно холодным. Очень важным узлом, определяющим долговечность турбокомпрессора, является узел подшипников вала. Обычно масло для смазки подшипников подается под давлением из системы смазки двигателя. Иногда для повышения работоспособности наддува применяют охлаждение корпуса турбины жидкостью из системы охлаждения двигателя. После продолжительного движения на высокой скорости автомобиля с турбонаддувом турбина может раскрутиться до высоких скоростей (сотни тысяч оборотов в минуту). После остановки двигателя турбокомпрессор останавливается не сразу, а масло уже не поступает к подшипникам. Чтобы не произошло повреждения подшипников, рекомендуется перед выключением двигателя дать ему возможность некоторое время поработать на холостом ходу.


Дизельный двигатель с турбонаддувом

Очень хорошо система турбонаддува работает в дизелях. Отработавшие газы в дизеле холоднее, чем в бензиновых двигателях, что облегчает работу турбокомпрессора, и, кроме того, в дизеле не существует опасности возникновения детонации. Поэтому неслучайно, что турбонаддув устанавливается почти на всех современных дизельных двигателях легковых автомобилей.

В многоцилиндровых двигателях с большим рабочим объемом некоторых грузовых автомобилей отработавшие газы продолжают обладать большой энергией, даже после прохождения турбокомпрессора. Эту энергию можно использовать для дальнейшего повышения мощностных характеристик двигателя, создавая так называемые турбокомпаундные двигатели. В таком двигателе часть энергии отработавших газов используется для раскручивания дополнительной турбины, которая через гидравлическую муфту связана с коленчатым валом. Такая конструкция дает возможность, увеличить крутящий момент на вале двигателя.
Подробнее о турбонаддуве — в главе Турбокомпрессор

Мощный и экономичный. Почему так привлекает столетняя идея турбонаддува двигателей?

Получение высоких показателей современных двигателей стало возможным благодаря применению наряду с микропроцессорной системой коррекции подачи топлива и совершенствованию смесеобразования применению регулируемого турбонаддува. Как к этому пришли?

 

Конструкторы решают задачи прежде всего повышения мощности ДВС. Это достаточно просто решить путем увеличением количества сгораемого топлива. Но статистика информирует, что на современном уровне развития техники затраты на эксплуатацию автомобиля составляют 31,7% от всех расходов. Причем более 60% расходов на эксплуатацию составляют расходы на нефтепродукты.

 

Способы повышения мощности двигателя

 

Не вникая в подробности теории ДВС, следует отметить, что мощность поршневого двигателя определяется его рабочим объемом (числом цилиндров), частотой вращения коленчатого вала и средним эффективным давлением в цилиндрах.

 

Увеличение мощности путем увеличения частоты вращения коленчатого вала проблематично вследствие ухудшения наполнения цилиндров свежим зарядом и стремительным возрастанием нагрузок от действия центробежных и инерционных сил (особенно на двигателях с большим рабочим объемом).

Мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем большее давление газов на поршень и, соответственно, больший крутящий момент и мощность.

 

 

Больше мощность – выше экономичность

 

Конструкторы работают в направлении чтоб не просто повысить мощность двигателя, а при существующей размерности цилиндров получить в них большую литровую мощность (мощность на единицу рабочего объема), то есть форсировать двигатель. Для форсирования двигателя существует много способов, но наиболее действенным является форсирование по наддуву.

 

Дело в том, что впуск свежей смеси в цилиндры ДВС происходит под действием разряжения, создаваемого при движении поршня к НМТ. Таким образом, в конце впуска давление в цилиндре «атмосферного» двигателя без наддува всегда будет меньше атмосферного. Соответственно, поскольку в зависимости от массы поступившего воздуха определяется количество впрыскиваемого топлива, мощность ДВС будет недостаточно высокой.

Чтобы повысить мощность, необходимо увеличить не только подачу топлива, а и соответствующую массу воздуха.

 

18 столетие – назад в будущее

 

Идея повышения наполнения цилиндров ДВС не новая. Она такая же старая, как и история самих двигателей внутреннего сгорания: оба «прародителя» современных двигателей, Г. Даймлер и Р. Дизель, выразительно представляли, что предварительное сжатие воздуха, который поступает в цилиндры, позволяет получить прибавку мощности. Более того, оба делали попытки применить наддув в конструкции своих двигателей.

 

Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler) еще в 1885 году придумал, как подавать в двигатель больше воздуха. Идея умного швейцарца простая, как все гениальное. Как ветер вращает крылья мельницы, так и отработанные газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много.

 

Турбина получает вращение от выхлопных газов, а соединенный с ней компрессор, работая как «вентилятор», нагнетает дополнительный воздух в цилиндры.

Однако, при существующем к тому времени развитии науки и техники, создать совершенную конструкцию не удалось. И это надолго отдалило идею турбонаддува.

В турбокомпрессоре турбина получает вращение от выхлопных газов, а соединенный с ней компрессор, работая как «вентилятор», нагнетает воздух под давлением в цилиндры двигателя.

 

Не все так просто

 

Несмотря на воображаемую простоту самой идеи и конструкции газонаддува, создание работоспособных агрегатов турбонаддува вместе с устройствами регуляции на практике оказалось задачей непростой. Для ее решения были нужны глубокие теоретические и прикладные исследования, а также создание высокотехнологических производственных процессов. Это было связано с тем, что вал турбокомпрессора вращается с частотой свыше 100 000 мин-1. При этом температура крыльчатки турбины, которая взаимодействует с отработанными газами, близкая к 1000 °С, тогда как со стороны короткого вала, в зоне крыльчатки компрессора, она в пять раз меньше. Понятно, что даже обеспечение кратковременной работы такого устройства — проблема.

Температура крыльчатки турбины, которая взаимодействует с отработанными газами, близкая к 1000 °С.

И все же проблемы турбонаддува на двигателях постепенно развязывались. Применять турбонаддув на серийных автомобильных двигателях начала немецкая компания BMW, выпустив в 1973 году модель BMW 2002 turbo. Учуяв выгодную технологию по стопам BMW пошли Porshe (911-я 1974 года) и Saab (Saab-99 1978 годы). А вскоре – и весь мир..

 

Установленные на них турбокомпрессоры обеспечивают при впускании небольшое (от 0,25 до 0,55 кгс/см2) избыточное давление. Благодаря этому крутящий момент двигателя достигает максимума уже при частоте вращения коленчатого вала 1600 — 1800 мин-1. Кроме того, они отличаются рекордной экономичностью и отвечают последним экологическим стандартам.

 

 

Прогресс турботехники привел к тому, что в настоящее время часть даже легковых автомобилей с турбонаддувними двигателями составляет приблизительно половину общего числа автомобилей в возрасте до 5 лет и продолжает увеличиваться. Из них порядка 20 % — бензиновые автомобили, другие — дизельные. Такое соотношение не случайно. Дизели существенно лучше приспособленные к наддуву вообще и к турбонаддуву в частности.

 

Цель оправдывает средства

 

Почему же в наши дни так привлекает двигателестроителей столетняя идея турбонаддува двигателей?

Двигатель, оборудованный турбокомпрессором имеет высокую удельную мощность и крутящий момент. Использование трубонаддува дает возможность достичь заданных характеристик силового агрегата (любой мощности) при меньших габаритах и массе, чем в случае применения «атмосферного» двигателя. Отсюда вытекает еще одно важное следствие: у турбодвигателя лучшая топливная экономичность. Ведь он более компактный и даже при одинаковой мощности с «атмосферным» двигателем, более эффективно расходует топливо. У него меньшая теплоотдача, насосные потери и относительные потери на трение. Экономии топлива способствует и более высокий крутящий момент, при низких частотах вращения коленчатого вала. Кроме того, у турбодвигателя лучшие экологические показатели. Меньшее потребление топлива «при других равных» означает меньшие суммарные выбросы вредных веществ.

Двигатель Volvo D16K обеспечивает мощность в 750 л.с. с крутящим моментом в 3550 Нм. Можно выбрать 3 уровня мощности и 4 варианта крутящего момента, каждый из которых полностью соответствует требованиям стандарта Евро-6.

 

Наддув также приводит к снижению температуры камеры сгорания и, соответственно, уменьшению образования окислов азота. В дизелях дополнительная подача воздуха позволяет сместить границу возникновения дымности, то есть более эффективно бороться с выбросами частиц сажи. Не было бы наддува, известные проблемы с применением на дизелях каталитических нейтрализаторов просто закрыли бы им дорогу в будущее. Дизели без наддува с трудом дотягивают к нормам «Евро-2».

 

Наконец, турбодвигатель способствует улучшению комфортабельности. Компрессор в магистрали впуска и турбина в выпускной системе существенно снижают шумность работы двигателя и обеспечивают акустический комфорт. Он дополняется удобством управления. Высокий, равномерно распределенный по частоте вращения крутящий момент добавляет двигателю большую эластичность.

 

 

Наддув + интеркуллер

 

Но при сжатии в компрессоре воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе становится меньше чем могло бы поместиться при отсутствии нагревания и, как результат, реальная мощность ниже расчетной и повышенный расход топлива. Чтоб создать условия для сгорания в цилиндрах большего количества топлива, принимают дополнительные меры для увеличения коэффициенту наполнения. С этой целью воздух, который сжимается в компрессоре, перед подачей в цилиндры двигателя охлаждается в интеркуллере, который стал неотъемлемой частью большинства двигателей с наддувом. Охлаждение надувочного воздуха в интеркуллере осуществляется путем обдувки его внешней ребристой поверхности воздушным потоком или за счет жидкостной системы охлаждения.

Воздух, который сжимается в компрессоре, перед подачей в цилиндры двигателя охлаждается в интеркуллере, который стал неотъемлемой частью большинства двигателей с наддувом.

Приблизительные расчеты показывают, что понижение температуры наддувочного воздуха на 10° позволяет увеличить его плотность приблизительно на 3%. Это, в свою очередь, увеличивает мощность двигателя приблизительно на такой же процент, так что, например, охлаждение воздуха на 33° даст увеличение мощности приблизительно на 10%.

 

С другой стороны, охлаждение воздушного заряда приводит к понижению температуры в начале такта сжатия и позволяет реализовать ту же мощность двигателя при уменьшенной степени сжатия в цилиндре. Следствием этого является уменьшение температуры отработанных газов, что положительно отражается на уменьшении тепловой нагрузки деталей камеры сгорания.

Охлаждение надувочного воздуха в интеркуллере осуществляется путем обдувки его внешней ребристой поверхности воздушным потоком или за счет жидкостной системы охлаждения.

 

Будущее наступает сегодня

 

На современных автомобилях, тракторах средней и большой мощности, а также других самоходных машинах, как правило, устанавливаются двигатели, оснащенные турбокомпрессорами. Именно, использование турбокомпрессоров обеспечивает их высокие технико-экономические показатели и уменьшает расход топлива на номинальных нагрузках в отличие от их безнаддувных аналогов.

 

В целом уменьшение степени сжатия, например у дизеля, до 15 и уменьшения размеров турбины улучшают типично слабые стороны двигателя с турбонаддувом, а именно: позволяют увеличить крутящий момент при низких частотах вращения коленчатого вала и сократить время выхода на новый режим работы при резком ускорении.

 

Ускорение повышения давления наддува при увеличении частоты вращения современного двигателя происходит в результате сравнительно малого момента инерции ротора турбокомпрессора, поскольку для наддува применяется турбокомпрессор малой размерности. В результате ускорения поступления воздуха в камеру сгорания при работе на переходных режимах обеспечивается хорошая приемистость двигателя и полнота сгорания топлива и, соответственно, уменьшается его расход.

 

 

 

Применяются регулируемые турбокомпрессоры типа WGТ в которых предусмотрены дополнительные конструктивные устройства для изменения скорости отработанных газов на входе в колесо газовой турбины. Они обеспечивают простоту регулировки давления наддува посредством клапана, перепуская часть отработанных газов, мимо турбины. Существуют и другие типы регулируемых турбокомпрессоров, в которых применяется изменение направления потока газов либо дополнительные клапаны в магистрали подачи воздуха. Но об этом отдельная статья.

Современный турбокомпрессор – это высокотехнологичное достижение инженерной мысли.

Турбокомпрессоры с изменяемой геометрией (ТИГ) – тип турбокомпрессоров, характеризующийся возможностью изменения сечения на входе колеса турбины с целью оптимизации мощности турбины для заданной нагрузки. Это обусловлено тем, что оптимальное сечение при низких оборотах существенно отличается от оптимального сечения при высоких оборотах. Если сечение классического турбокомпрессора слишком большое, то на низких оборотах эффективность турбокомпрессора будет низкой. Если сечение слишком маленькое, то эффективность будет низкой на высоких оборотах.

 

За счет возможности изменения сечения турбокомпрессоры с изменяемой геометрией улучшают отклик, повышают мощность и крутящий момент, снижают потребление топлива и количество вредных выбросов

 

Использование регулируемого наддува позволяет существенно улучшить характер изменения крутящего момента, подняв уровень максимальных величин и сместив их в зону сниженных частот вращения двигателя.

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Новости о науке, технике, вооружении и технологиях.

Подпишитесь и будете получать свежий дайджест лучших статей за неделю!

Email*

Подписаться

Наддув — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 мая 2015; проверки требуют 12 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 мая 2015; проверки требуют 12 правок. Термин «Наддув» имеет и другие значения.

Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности при текущем уровне атмосферного давления и есть основная цель наддува. Буквальным следствием этой технической особенности стало одно из ранних применений наддува для компенсации высотного падения мощности в авиационных маршевых ДВС.

Также, наддув есть любого рода создание повышенного давления в принципе. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.

Возможен агрегатный наддув и безагрегатный наддув.

Лопастная турбина и лопастной центробежный компрессор в составе турбонагнетателя Роторный компрессор Roots, применявшийся на приводных нагнетателях Принципиальная схема работы нагнетателя с электрическим приводом

Под агрегатным подразумевается наддув, создание которого обеспечивается неким агрегатом. Фактически, таковых агрегатов в технике всего три — турбонагнетатель, приводной нагнетатель, нагнетатель с электрическим приводом. Первый работает от энергии выхлопных газов и состоит из газовой турбины и компрессора. Второй работает от непосредственного привода с коленвала двигателя и состоит из механической передачи и компрессора. Третий работает от электропривода и состоит из высокооборотного электромотора и компрессора. Вообще, компрессор входит в состав любого агрегата наддува, вследствие чего, такие термины как турбокомпрессор, приводной компрессор и компрессор с электрическим приводом являются синонимами вышеупомянутым трём и правомерны к использованию. Конструкция компрессора может быть универсальна для любого агрегата, хотя обычно в турбонагнетателе и нагнетателе с электрическим приводом используются лопастные центробежные компрессоры, а в приводном нагнетателе — роторные компрессоры. Сам термин «агрегатный наддув» практически никогда не используется, и таковым в речевом обиходе применительно к считается просто любой наддув, если иное не оговорено особо.

Особенность и преимущества агрегатного наддува (турбонаддува, в первую очередь) в том, что таковой позволяет получать сверхвысокие давления на впуске в ДВС — вплоть до 5 Бар — что даёт в итоге примерно кратное давлению наддува повышение удельной мощности на отдельных режимах работы. Всережимного увеличения мощности посредством одного типа агрегата наддува достичь сложно в силу разных причин (либо для этого требуется сильное механическое усложнение конструкции нагнетателя) поэтому часто на ДВС применяются комбинированные системы, состоящие, например, из турбонагнетателя и приводного нагнетателя, или турбонагнетателя и нагнетателя с электрическим приводом.

Также в авиации для компенсации высотного падения мощности маршевых поршневых двигателей на многомоторных самолётах были исторические попытки применения группового агрегатного наддува, обеспечивающего дополнительное снабжение маршевых двигателей воздухом на больших высотах. Основой этой системы был отдельный мотор-компрессор, состоявший из одного двигателя, аналогичного маршевому, и объёмного компрессора, дополненный системой воздуховодов к каждому маршевому двигателю. Пример — тяжёлый бомбардировщик Пе-8.

Агрегатный наддув применяется как на четырёхтактных ДВС, так и на двухтактных ДВС, поршневых и роторно-поршневых, работающих практически по любому термодинамическому циклу (циклу Отто, циклу Дизеля, прочих). Однако к газотурбинным двигателям термин «агрегатного наддува» в русскоязычном инженерно-техническом лексиконе обычно не применяется, несмотря на обязательное наличие компрессора в составе таких двигателей. Важным следствием применения агрегатного наддува является снижение удельного расхода топлива (в граммах на л. с. за час).

К безагрегатному наддуву относят:

  • динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений во впускном и/или выпускном трубопроводах;
  • скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;
  • рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение[когда?] на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до ηv=0,92−0,96{\displaystyle \eta _{v}=0,92-0,96} в широком диапазоне изменения частоты вращения двигателя. Увеличение ηv{\displaystyle \eta _{v}} при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

Турбонаддув: устройство и конструктивные особенности

Постоянная гонка инженеров за увеличением мощности ДВС привела к появлению турбокомпрессоров. Данное решение оказалось самым эффективным как на бензиновых, так и на дизельных моторах.

Становится вполне очевидным, что итоговая мощность ДВС пропорциональна количеству топливовоздушной рабочей смеси, которая попадает в цилиндры двигателя. Закономерно, что двигатель с большим объемом способен пропускать больше воздуха и тем самым выдавать больше мощности сравнительно с двигателем меньшего объема. Если перед нами стоит задача добиться от малообъемного ДВС такой же мощности, которую демонстрируют моторы большего объема, тогда необходимо принудительно уместить как можно больше воздуха в цилиндрах такого двигателя.

Читайте в этой статье

Небольшой прирост или солидное увеличение мощности

Существует несколько способов форсирования силовой установки без турбонаддува. Можно произвести ряд доработок конструкции головки блока цилиндров, обеспечить установку спортивных распредвалов, поставить фильтр нулевого сопротивления, улучшить продувку и тем самым обеспечить подачу большего количество воздуха в цилиндры при  езде в режиме максимально высоких оборотов.

Вполне можно и вовсе не стремится менять количество поступающего в мотор воздуха, а вместо этого увеличить степень сжатия и перейти на использование горючего с более высоким октановым числом. Доступно даже расточить цилиндры и нарастить их объем. Это также позволит увеличить КПД Вашего мотора.

Все указанные способы уместны и работают, но только тогда, когда мощность планируется увеличить всего на 15-20%.

Если речь заходит о кардинальных изменениях и значительном увеличении мощности мотора, тогда без компрессора уже не обойтись. Наиболее эффективным методом будет установка турбокомпрессора. Более того, установка турбонаддува способна увеличить мощность  любого специально подготовленного для таких возросших нагрузок мотора.

В предыдущих статьях мы поверхностно  перечислили основные элементы системы турбонаддува. Теперь давайте подробнее рассмотрим те главные этапы и процессы, когда сначала воздух проходит в системе с установленным турбокомпрессором, а затем отработавшие газы приводят в действие компрессор. Для примера возьмем турбокомпрессор дизельного ДВС.

  • В самом начале пути воздух пропускается через воздушный фильтр и оказывается на входе в турбокомпрессор;
  • Внутри турбонагнетателя попавший туда воздух проходит процесс сжатия. При этом возрастает количество необходимого для эффективного сгорания топливно-воздушной смеси кислорода на единицу объема воздуха. В этот самый момент сжатия проявляется нежелательный в данном случае эффект нагрева воздуха от сжатия и снижение его плотности;
  • Для охлаждения после сжатия в турбокомпрессоре воздух попадает в интеркулер. В интеркулере температура воздуха практически полностью возвращается на начальный уровень. Благодаря охлаждению достигается как увеличение плотности воздуха, так и снижается вероятность появления детонации от использования последующей топливовоздушной смеси;
  • За интеркулером охлажденный воздух минует дроссельную заслонку и оказывается во впускном коллекторе. Последним этапом становится такт впуска, когда рабочая смесь окажется в цилиндрах двигателя;
  • Объем цилиндра представляет собой неизменную постоянную величину, которая зависит от его диаметра и хода поршня. Благодаря турбокомпрессору этот объем активно заполняется сжатым и охлажденным воздухом. Это означает, что количество кислорода в цилиндре сильно возрастает по сравнению с атмосферными моторами. Не трудно догадаться, что чем большее количество кислорода поступило, тем больше горючего можно сжечь за рабочий такт. Сгорание большего количества горючего в результате приводит к заметному увеличению итоговой мощности мотора;
  • После эффективного сгорания топливовоздушной смеси в цилиндрах двигателя наступает такт выпуска. На этом такте отработавшие газы уходят в выпускной коллектор через выпускные клапаны. Весь этот поток разогретого (от 500С до 1100С  зависимо от типа двигателя) газа проникает в турбину и начинает воздействовать на турбинное колесо. Колесо под давлением выхлопных газов передает энергию на вал турбины, а на другом конце вала находится компрессор.

Так и происходит процесс сжатия свежей порции воздуха для следующего рабочего такта. Одновременно происходит падение давления отработавших газов, а также снижается температура выхлопа. Это получается по причине того, что часть энергии газов уходит на обеспечение работы турбокомпрессора на другой стороне вала турбины;

Дополнительные элементы системы турбонаддува

Если говорить о конкретных модификациях мотора, а также о компоновке различных элементов в подкапотном пространстве, турбокомпрессор может иметь ряд дополнительных элементов. Мы  уже упоминали такие детали системы, как Wastegate и Blow-Off. Давайте рассмотрим их  более подробно.

Клапан Blow-off

Блоу-офф представляет собой перепускной клапан. Данное устройство устанавливается в воздушной системе. Местом расположения становится участок между выходом из компрессора и дроссельной заслонкой. Главной задачей блоу-офф клапана становится предотвращение выхода компрессора на характерный режим работы surge.

Под таким режимом стоит понимать момент резкого закрытия дросселя. Если описать происходящее простыми словами, то скорость воздушного потока и сам расход воздуха в системе резко понижаются, но турбина еще определенное время продолжает вращение по инерции. Инерционно турбина вращается с той скоростью, которая уже больше не соответствует новым потребностям мотора и упавшему таким образом расходу воздуха.

Последствия после циклических скачков  давления воздуха за компрессором могут быть плачевны. Явным признаком скачков является характерный звук воздуха, который  прорывается через компрессор. С течением времени из строя выходят  опорные подшипники турбины, так как они испытывают сильные нагрузки в момент указанных скачков давления при сбросе газа и последующей работе турбины в этом  переходном режиме.

Блоуофф  реагирует на разницу давлений в коллекторе и срабатывает благодаря установленной внутри пружине. Это позволяет выявить момент резкого перекрытия дросселя. Если дроссель резко закрылся, тогда блоу-офф осуществляет стравливание в атмосферу внезапно появившегося в воздушном тракте избытка давления. Это позволяет существенно обезопасить турбокомпрессор и уберечь его от избытка нагрузок и последующего разрушения.

Клапан Wastegate

Данное решение представляет собой механический клапан. Вестгейт установливают на турбинной части или же на самом выпускном коллекторе. Задачей устройства является обеспечение контроля за тем давлением, которое создает турбокомпрессор.

Стоит отметить, что некоторые дизельные силовые агрегаты используют в своей конструкции турбины без вейстгейта. Для моторов, которые работают на бензине, в большинстве случаев наличие такого клапана является обязательным условием.

Главной задачей вейстгейта становится обеспечение возможности беспрепятственного выхода для выхлопных газов из системы в обход турбины. Запуск части отработавших газов в обход позволяет осуществлять контроль за необходимым количеством энергии  этих газов. Взаимосвязь очевидна, ведь именно выхлоп вращает через вал колесо компрессора. Данный способ позволяет эффективно управлять давлением наддува, которое создается в компрессоре. Наиболее частым решением становится контроль вейстгейта за давлением наддува, который осуществляется при помощи противодавления встроенной пружины. Такая конструкция позволяет контролировать обходной поток выхлопных газов.

  • Вейстгейт может быть как встроенным, так и внешним. Встроенный вейстгейт конструктивно имеет заслонку, которая встроена в турбинный хаузинг. Хаузинг в народе попросту называют «улитка» турбины. Дополнительно wastegate имеет пневматический актуатор и тяги от данного актуатора к дроссельной заслонке.
  • Гейт внешнего типа представляет собой клапан, который установлен на выпускной коллектор перед турбиной. Необходимо заметить, что внешний гейт имеет одно неоспоримое преимущество сравнительно со встроенным. Дело в том, что сбрасываемый им обходной поток можно возвращать обратно в выхлопную систему достаточно далеко от выхода из турбины, а на спортивных авто и вовсе осуществить прямой сброс в атмосферу. Это позволяет заметно улучшить прохождение отработавших газов через турбину благодаря тому, что наблюдается отсутствие разнонаправленных потоков. Все это очень важно применительно к ограниченному компактному объему «улитки».

Выбираем турбину для мотора

Правильный подбор турбокомпрессора является главным моментом в процессе постройки качественного турбомотора. Подбирать турбину следует на основе многих данных.

Первым и основным фактором при выборе является та мощность, которую Вы хотите получить в итоге от мотора. Очень важно подходить к этому показателю разумно и реально взвешивать возможности ДВС применительно к той или иной степени наддува.

Мы знаем, что мощность силовой установки напрямую зависит от количества топливно-воздушной смеси, которая попадет в цилиндры за единицу времени. Нужно в самом начале определить желаемый показатель мощности. Только затем можно осуществлять выбор турбины, которая будет способна обеспечить достаточный поток воздуха для получения  итогового показателя запланированной отдачи от построенной силовой установки.

Вторым по значимости показателем при выборе турбины становится скорость ее выхода на эффективный наддув. Более того, этот выход на наддув сопоставляется с минимальными оборотами двигателя, на которых и будет происходить нагнетание. Чем меньше турбина или меньше сам горячий хаузинг (улитка), тем больше шансов на улучшение этих показателей. Учтите, что максимальная мощность при этом однозначно будет ниже по сравнению с турбиной большего размера.

На деле все может оказаться не так плохо, ведь меньшая турбина обеспечивает больший рабочий диапазон в процессе работы двигателя. Такая турбина способна быстрее выходить на наддув при открытии дроссельной заслонки, а итоговый результат в конечном итоге может оказаться даже намного более положительным. Использование же большей турбины с большой максимальной мощностью позволит обеспечить преимущество только в достаточно узком диапазоне работы мотора на высоких оборотах.

Особенности эксплуатации турбокомпрессора

Наиболее частой причиной выхода из строя современных турбокомпрессоров является то, что масло забивает центральный картридж турбины. Закоксовка маслом происходит после быстрой остановки турбомотора после серьезных и продолжительных нагрузок. Дело в том, что усиленный теплообмен между турбиной и разогретым выпускным коллектором сопровождается  отсутствием потока свежего масла и поступлений охлажденного  наружного воздуха в компрессор. Возникает общий перегрев картриджа и  происходит закоксовка оставшегося в турбине масла.

Свести такой негативный эффект к минимуму позволяет решение водяного охлаждения турбины. Магистрали с охлаждающей жидкостью создают теплопоглощающий эффект и снижают  уровень температуры в центральном картридже. Это происходит  даже после полной остановки двигателя и при отсутствии принудительной циркуляции ОЖ. С учетом этого  рекомендуется обеспечить минимум неравномерностей по вертикальной линии подачи ОЖ, а также осуществить разворот центрального картриджа вокруг оси турбины (это можно сделать под углом около 25 градусов).

Дополнительно в ряде случаев потребуется установка «турботаймера». Под этим решением понимается устройство, которое не позволяет двигателю сразу остановиться после того, когда водитель выключил зажигание. Устройство позволяет вынуть ключ, выйти из автомашины, поставить автомобиль под охрану сигнализации, а затем само заглушит мотор спустя заданное количество времени. Для повседневной эксплуатации турботаймер очень удобен, прост и практичен в использовании.

Виды турбин: втулочные и шарикоподшипниковые турбины

Турбины втулочного типа были  сильно распространены достаточно долгое время. Они имели ряд конструктивных недостатков, которые не позволяли в полной мере наслаждаться преимуществами турбомотора.  Появление более эффективных шарикоподшипниковых турбин нового поколения постепенно вытесняет втулочные решения. Для примера можно упомянуть шарикоподшипниковые турбины Garrett, которые являются венцом инженерной мысли и используются на многих гоночных двигателях.

На сегодняшний день шарикоподшипниковые турбины являются оптимальным решением, так как требуют значительно меньшего количества масла сравнительно с втулочными аналогами. Учтите, что установка масляного рестриктора на входе в турбокомпрессор является очень желательной, особенно если давление масла в системе находится на отметке выше 4 атм. Осуществлять слив масла необходимо путем специального подвода в поддон, причем с учетом того, что слив должен быть выше уровня масла.

Всегда помните, что слив масла из турбины происходит самостоятельно и под действием силы гравитации. Знание этого диктует необходимость ориентирования центрального картриджа турбины так, чтобы слив масла был направлен вниз.

Тот показатель, который определяет реакцию турбины на нажатие педали газа, демонстрирует  сильную зависимость от самой конструкции центрального картриджа турбины. Шарикоподшипниковые решения от Garrett способны на 15% быстрее выйти на наддув сравнительно с втулочными аналогами. Шарикоподшипниковые турбины снижают эффект турбо-ямы и делают использование турбомотора максимально похожим на езду с таким атмосферным двигателем, который имеет большой рабочий объем.

Шарикоподшипниковые турбины имеют еще один положительный момент. Такие турбины требуют заметно меньшего потока масла,  которое проходит через картридж и осуществляет смазку подшипников. Решение ощутимо снижает вероятность возникновения утечки масла через сальники. Шарикоподшипниковые турбины не являются излишне требовательными к качеству масла, а также менее подвержены закоксовке после плановой или внезапной  остановки двигателя.

Подведем итоги

Использование современных турбин от ведущих производителей позволяет говорить о получении двигателей с выдающимися динамическими показателями. Эффект турбоямы, а также жесткие требования к особенностям эксплуатации турбомоторов за последнее время заметно снизились, возросла надежность массовых систем турбонаддува. Активное использование электронных блоков управления позволило поднять турбокомпрессоры на абсолютно новый качественный уровень.

Такие характеристики позволяют данному решению уверенно опережать большеобъемные атмосферники практически всем. Сегодня  автомобиль с турбонаддувом для многих автовладельцев является мощным, надежным, динамичным и практически идеальным выбором как для повседневной, так и для спортивной езды!

Для того, чтобы окончательно убедиться во всесильности турбокомпрессора, просто посмотрите следующий увлекательный видеоролик. Нам же на этой позитивной ноте пора заканчивать и остается только пожелать читателям стабильного наддува и полного отсутствия турбоям!

Читайте также

Достоинства и недостатки применения наддува двигателя

Основные достоинства применения наддува заключаются, конечно, в повышении мощности при практически неизменных показателях массы и габаритов. Однако имеются и другие достоинства (которые оцениваются в условиях одинаковой развиваемой мощности как двигателем с наддувом, так и без наддува). К ним относятся следующие.

Повышение топливной экономичности, т.е. снижение удельного эффективного расхода топлива. Дизель с наддувом имеет более низкий удельный расход топлива, чем аналогичный дизель с естественным всасыванием, в диапазоне повышенных нагрузок, т.е. тогда, когда особенно существенно сказывается давление наддува.

Сравнение нагрузочных характеристик по удельному расходу топлива дизелей с наддувом и без наддува

Рис. Сравнение нагрузочных характеристик по удельному расходу топлива дизелей с наддувом и без наддува

При пониженных нагрузках, когда двигатель с наддувом приближается по этому показателю к двигателю без наддува, экономичность их сравнивается или даже ухудшается у наддувного двигателя. И всё же при 100% нагрузки безнаддувного двигателя его удельный расход превышает удельный расход дизеля с наддувом (при той же мощности) на величину, превышающую 7 %.

Основными причинами повышения экономичности дизеля с наддувом являются следующие:

  • A) Более совершенное сгорание благодаря возможности использовать повышенный коэффициент избытка воздуха.
  • Б) Большая доля топлива сгорает при постоянном объёме, повышается степень повышения давления X при сгорании.
  • B) Зарядка цилиндра происходит воздухом повышенного давления, благодаря чему появляется дополнительная положительная работа, причём энергия на предварительное сжатие воздуха отбирается не от двигателя, а от отработавших газов, которые в двигателе без наддува выбрасывались в атмосферу.

Можно сказать, что моторесурс дизеля с наддувом превышает моторесурс аналогичного безнаддувного двигателя. Это связано со следующими факторами. Период задержки воспламенения в наддувном двигателе, как правило, уменьшается, т. к. впрыскивание топлива происходит в среду с повышенной температурой. В результате этого снижается фактор динамичности цикла, сгорание становится более мягким, пропадают характерные для дизеля ударные нагрузки.

Повышение температуры и давления заряда в цилиндре позволяют на двигателе с наддувом применять нетрадиционные (альтернативные) топлива, как правило, более дешёвые. Их особенностью как правило, является пониженная воспламеняемость (низкие цетановые числа), повышенная вязкость и т. д.

Повышенный коэффициент избытка воздуха позволяет лучше охлаждать камеру сгорания. Благодаря повышенному коэффициенту избытка воздуха отработавшие газы имеют более низкую температуру, т. е. не перегружают термическими нагрузками выпускной клапан и т. д. Благодаря наддуву среднее эффективное давление дизеля становится выше, но максимальное давление не возрастает в такой же степени, т.е. не возрастают нагрузки на подшипники и другие детали, что повышает срок их службы.

В нестандартных условиях, например, в условиях высокогорья, двигатель с турбонаддувом менее чувствителен к снижению плотности воздуха с ростом высоты над уровнем моря. Снижение плотности автоматически в определённой степени компенсируется повышением эффективности работы турбонагнетателя.

Практические достоинства применения наддува заключаются в следующем. Целесообразно применять наддув, если требуется повысить мощность силовой установки, практически не меняя конструкции самого двигателя. Целесообразно применять наддув, когда нужно сэкономить пространство, например, пространство внутри судна для увеличения полезного объёма перевозимого груза. Цена на двигатель с наддувом остаётся ниже, чем цена на двигатель без наддува (при одинаковой мощности).

При всех указанных достоинствах применение наддува обладает и рядом недостатков, которые зависят прежде всего от применяемых схем наддува, методов наддува, принципов его организации, конструктивного оформления системы наддува. На рисунке показано, что двигатель со свободным турбокомпрессором имеет номинальную мощность на 10 — 15 % выше, чем двигатель без наддува. Однако при этом коэффициент приспособляемости (К) по моменту снизился на 4,3 %, а по частоте (Кп) — на 7,5 %. Это является недостатком двигателя силовой установки транспортного назначения. Известно, что бензиновый двигатель более приспособлен для использования в качестве двигателя для транспортного средства благодаря высоким значениям коэффициентов приспособляемости по моменту. Такой двигатель обладает лучшей тяговой характеристикой.

Изменение внешней скоростной характеристики дизеля (характеристика крутящего момента) в вариантах без наддува и с наддувом

Рис. Изменение внешней скоростной характеристики дизеля (характеристика крутящего момента) в вариантах без наддува и с наддувом

Спрямление внешней скоростной характеристики по моменту при применении наддува объясняется изменением (спрямлением) кривой относительного коэффициента наполнения.

В условиях эксплуатации двигатели различных назначений работают преимущественно на неустановившихся режимах. Двигатели со свободным турбокомпрессором обладают худшей приёмистостью, чем двигатели с приводными нагнетателями или другими специальными схемами наддува. То есть из-за отставания разгона турбокомпрессора от разгона коленчатого вала, происходит отставание процесса снабжения цилиндров воздухом, снижаются эксплуатационные экономические и мощностные показатели.

В целом, говоря о достоинствах дизелей с наддувом, можно отметить следующее:

  1. Благодаря применению наддува можно поднять мощность силовой установки, источника энергии без дорогостоящих модернизаций.
  2. Благодаря наддуву можно использовать более компактные установки, экономя габариты машинного зала, машинного отделения судна, подкапотного пространства автомобиля и т. д., а также снизить массу установки.
  3. Благодаря наддуву можно снизить расход топлива, вообще стоимость расходов на эксплуатацию установок.
  4. Благодаря турбонаддуву снижается шум выхлопа, т. к. турбина сама является хорошим глушителем шума.
  5. Благодаря наддуву можно решить проблемы, связанные с эксплуатацией установок в высокогорных условиях.
  6. Двигатели с наддувом позволяют применять более дешёвые, нетрадиционные топлива.
  7. Двигатели с наддувом меньше загрязняют окружающую среду вредными выбросами.

К недостаткам наддува относятся более высокие механические и тепловые нагрузки, чем у двигателей без наддува. При определённых условиях двигатель с турбонаддувом имеет менее благоприятное протекание кривой крутящего момента двигателя, особенно при высоких степенях наддува. Двигатель со свободным турбонаддувом имеет худшую приёмистость.

Отправить ответ

avatar
  Подписаться  
Уведомление о